• 제목/요약/키워드: Laboratory freezing test

검색결과 73건 처리시간 0.025초

동결융해 작용을 받는 콘크리트 구조물의 내구성능 저하 예측 방법에 관한 연구 (A Study on the Deterioration Prediction Method of Concrete Structures Subjected to Cyclic Freezing and Thawing)

  • 고경택;김도겸;조명석;송영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.131-140
    • /
    • 2001
  • In general, the deterioration induced by the freezing and thawing cyclic in concrete structures often leads to the reduction in concrete durability by the cracking or surface spalling. If it can prediction of concrete deterioration subjected to cyclic freezing and thawing, we can rationally do the design of mix proportion in view of concrete durability and the maintenance management of concrete structures. Therefore in this study a prediction method of deterioration for concrete structures subjected to the irregular freezing and thawing is proposed from the results of accelerated laboratory freezing and thawing test using the constant temperature condition and the in-situ weathering data. Furthermore, to accurately predict the concrete deterioration, a method of modification for the effect of hydration increasing during rapid freezing and thawing test is investigated.

  • PDF

철도노반재료의 동상팽창압 및 물리적 특성 평가 (Frost Heaving Pressure and Physical Characteristics of the Railway Roadbed Materials)

  • 신은철;박정준;김종인
    • 한국철도학회논문집
    • /
    • 제8권1호
    • /
    • pp.57-62
    • /
    • 2005
  • The frost heaving pressure can be a problem for weakening of the railway roadbed material. This study was initiated to investigate the soils frost heaving pressure and physical characteristics(Liquid limit, permeability, SEM analysis) resulting from freezing and freezing-thawing cycle process. Therefore, upon freezing a saturated soil in a closed-system from the top, a considerable pressure was developed. Weathered granite soils, sandy soil were used in the laboratory freezing test which sometimes subjected to thermal gradients under closed-systems. The frost heaving pressure arising within the soil samples and the temperature of the samples inside were monitored with elapsed time. The degree of saturation versus heaving pressure curve is also presented for weathered granite soil and the maximum pressure is closely related to this curve. Based on the laboratory test results, fine-grained soils with strong attractive forces between soil grains md water molecules, and additional water is attracted into the pores leading to further volume changes and ice segregation.

철도노반재료의 동상 팽창압 특성에 관한 연구 (The Characteristics of Frost Heaving Pressure on the Railroadbed Materials)

  • 신은철;박정준;이창섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.264-270
    • /
    • 2002
  • The frost heaving pressure can be a problem for weakening of the railroadbed material. In this study, upon freezing a saturated soil in a closed-system from the top, a considerable pressure was developed. This pressure is induced as a result of a curved ice-water interface. This study was initiated to investigate the soils frost heaving expansion pressure and physical characteristics resulting from freezing and freezing-thawing cycle process. Weathered granite soils, sandy soil were used in the laboratory freezing test subjected to thermal gradients under closed-systems.

  • PDF

현장 모형 도로 축소 실험을 이용한 포장구성층의 동결 특성 분석 (Analisys on Freezing Characteristics of Pavement Layer Using the Feild Pavement Model test)

  • 신은철;류병현;문용수;박정준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1164-1171
    • /
    • 2010
  • Korea is considered to be a seasonal frozen soil area that is thawed in the spring, and most of the area is frozen in winter as to the characteristic of geography. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this research, the evaluation of frost susceptibility on subgrade, ant-freezing layer, sub base was conducted by means of the mechanical property test and laboratory field road model downed scale experiment. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade, anti-freezing layer, sub base soils of highway construction site, were measured to determine the frost susceptibility.

  • PDF

실내동결시스템을 이용한 노상토의 동상 특성 (The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System)

  • 신은철;류병현;박정준
    • 한국도로학회논문집
    • /
    • 제12권2호
    • /
    • pp.71-79
    • /
    • 2010
  • 겨울에는 시베리아기단의 영향으로 한랭 건조한 대륙성 고기압의 영향을 받아 춥고 건조하여 1월 평균기온이 $-6{\sim}-7^{\circ}C$의 영하의 온도로 낮아져 지반동결시 수분이동으로 동상현상이 발생하여 도로의 불균형 동결팽창을 초래하며, 결국 포장체를 파손시킨다. 동상발생시 토립자는 모관력에 의해 지하수를 흡수하여 아이스렌즈를 형성하며, 이 모관 흡수력은 토립자의 크기에 영향을 받는다. 도로는 다양한 재료와 단면으로 구성된 구조물이기 때문에 환경성과 재료 물성뿐만 아니라 포장체 각 층의 구조적 적정성 또는 지지력을 파악하는 것이 무엇보다 중요하다. 현재 기존 동상방지층 설계법에 따르면, 동상방지층은 포장체의 구조적 적정성과는 무관하게 온도 조건에 따른 동결깊이에 따라 일률적으로 결정되고 있다. 이러한 동결깊이를 포장구조설계에 적용함으로써 포장의 과다설계 우려가 있다. 따라서 본 논문에서는 도로 동상방지층의 효용성 검증 및 설치기준 확립을 위해 실내동결시스템을 활용하여 도로 노상토의 동상 특성에 대한 민감성을 판별, 도로건설 현장 노상토에 대한 역학적 특성과 실내 동결 시험을 수행하였으며, 외부 동결온도의 지속 조건에 대한 시료의 온도변화, 동상팽창압, 동상팽창량, 부동수분 등의 결과값을 통하여 동결 과정에 따른 지반공학적 특성을 평가하였다.

온도조건에 의한 도로하부 지반의 동결 및 지지력 특성 (Freezing and Bearing Capacity Characteristics of Road Foundations under Temperature Condition)

  • 신은철;김성환;박정준
    • 한국지반공학회논문집
    • /
    • 제28권3호
    • /
    • pp.5-14
    • /
    • 2012
  • 현재 기존 동상방지층 설계법에 따르면, 동상방지층은 도로 노상토의 동상특성이 아닌 온도에 따른 동결깊이에 근거해 일률적으로 결정되어 포장설계의 부실 또는 과다설계 우려가 있다. 도로는 다양한 재료와 단면으로 구성된 구조물이기 때문에 환경성과 재료 물성 뿐만 아니라 포장체 각 층의 구조적 적정성 또는 지지력을 파악하는 것이 무엇보다 중요하다. 따라서 본 논문에서는 대형 냉동고내에 실내모형토조를 구성하여 포장하부구조재료(노상층, 쇄석골재층)의 시간에 따른 온도와 동상량 변화, 동결융해에 따른 지반의 지지력 변화를 통하여 포장하부구조체의 역학적 관계를 분석하였다.

실내 동상시스템을 이용한 노상토의 동상민감성 평가 (The Frost Heaving Susceptibility Evaluation of Subgrade Soils Using Laboratory Freezing System)

  • 신은철;류병현;박정준
    • 한국지반신소재학회논문집
    • /
    • 제12권2호
    • /
    • pp.13-23
    • /
    • 2013
  • 겨울에는 시베리아기단에 의해 한랭 건조한 대륙성 고기압의 영향을 받는 계절동토지역인 우리나라는 춥고 건조하여 1월 평균기온이 $-6{\sim}-7^{\circ}C$의 영하의 온도로 낮아져 지반동결시 수분이동으로 동상현상이 발생하여 지반구조물의 불균형 동결팽창을 초래한다. 동상 발생시 토립자는 모관력에 의해 지하수를 흡수하여 아이스렌즈를 형성하며, 이 모관 흡수력은 토립자의 크기에 영향을 받는다. 본 연구에서는 흙의 종류에 따른 동상민감성의 차이를 알아보기 위하여 공학적 특성이 다른 10종류의 흙시료에 대하여 물리적 특성 파악과 통일분류법에 의한 흙 분류를 통해 실내동상실험을 실시하였다. 이에 각각 흙의 종류에 따른 동결깊이, 동상팽창량, 부동수분, 아이스렌즈와 같은 동상특성을 확인하여 시료의 동상민감성을 평가하였다.

동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성 (Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil)

  • 서영교;최헌우
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

Effect mechanism of unfrozen water on the frozen soil-structure interface during the freezing-thawing process

  • Tang, Liyun;Du, Yang;Liu, Lang;Jin, Long;Yang, Liujun;Li, Guoyu
    • Geomechanics and Engineering
    • /
    • 제22권3호
    • /
    • pp.245-254
    • /
    • 2020
  • The interaction between the frozen soil and building structures deteriorates with the increasing temperature. A nuclear magnetic resonance (NMR) stratification test was conducted with respect to the unfrozen water content on the interface and a shear test was conducted on the frozen soil-structure interface to explore the shear characteristics of the frozen soil-structure interface and its failure mechanism during the thawing process. The test results showed that the unfrozen water at the interface during the thawing process can be clearly distributed in three stages, i.e., freezing, phase transition, and thawing, and that the shear strength of the interface decreases as the unfrozen water content increases. The internal friction angle and cohesive force display a change law of "as one falls, the other rises," and the minimum internal friction angle and maximum cohesive force can be observed at -1℃. In addition, the change characteristics of the interface strength parameters during the freezing process were compared, and the differences between the interface shear characteristics and failure mechanisms during the frozen soil-structure interface freezing-thawing process were discussed. The shear strength parameters of the interface was subjected to different changes during the freezing-thawing process because of the different interaction mechanisms of the molecular structures of ice and water in case of the ice-water phase transition of the test sample during the freezing-thawing process.

흙의 동상민감성과 포화도를 고려한 동상팽창압 특성 (Frost Heaving Pressure Characteristics of Frozen soils with Frost-Susceptibility and Degree of Saturation)

  • 신은철;박정준;김종인
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.329-336
    • /
    • 2002
  • The earth structures and in-ground LNG tank, and buildings can be constructed with using artificial freezing method on the reclaimed land. In this study, upon freezing a saturated soil in a closed-system from the top, a considerable pressure was developed. The pressure is the result of the surface energy of a curved ice-water interface. The most significant of these parameters will have the greatest effect on the classification. In order to establish frost-susceptibility criteria based on frost heaving expansion pressure, more soils have to be tested. This study was initiated to investigate the soils frost heaving expansion pressure and moisture characteristics resulting from freezing and freezing-thawing cycle process. Weathered granite soils, sandy soil, sandy soil were used in the laboratory freezing test subjected to thermal gradients under closed- systems.

  • PDF