• Title/Summary/Keyword: LaOCl

Search Result 4, Processing Time 0.022 seconds

Studies on the Fluorescence of $Eu^{3+}\;and\;Tb^{3+}$ in Lanthanum Oxychloride (염화산화란탄에서 유로퓸(III) 과 테르븀(III)의 형광에 관한 연구)

  • Young Gu Ha;Taesam Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.82-89
    • /
    • 1989
  • The fluorescence of $Eu^{3+},\;Tb^{3+}$ substituted for $La^{3+}$ in Lanthanum Oxychloride (LaOCl) has been studied. The fluorescence intensity of the $Eu^{3+},\;Tb^{3+}$ in LaOCl excited by Ultra-violet light were investigated on its activator concentration and discussed as the energy transfer process. The energy transfer from $Tb^{3+}\;to\;Eu^{3+}$ take place in the $Eu^{3+}\;and\;Tb^{3+}$ codoped LaOCl crystal. This process was confirmed to the change of concentration and the measurement of fluorescence decay time.

  • PDF

Energy Transfer Fluorescence Quenching of $Pr^{3+}$ in LaOCI

  • Kim, Taesam;Ha, Younggu
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.125-129
    • /
    • 1995
  • The energy transfer is observed in double-activator-doped LaOCl:Pr, Tb and LaOCl:Pr, Eu system. From laser excitation and fluorescence spectra, a peculiar process for energy transfer between the activators is found. The energy absorbed by $Tb^{3+}$ is directly transferred to $Pr^{3+}$ ion. A cascade relaxation of an excited $Pr^{3+}$ level to lower level, $^1D_2$ is induced by $Eu^{3+}$, $Tb^{3+}$, which has $^7F_J$ ground levels like $Eu^{3+}$ ion, does not affect the cascade relaxation. The result represents that the quantum state of ion is not absolute condition for the energy transfer and that the energy transfer is competitive between levels of activator when the activator ions are closely located.

  • PDF

Preparation of dielectric Bi4-xLaxTi3O12 (x~2) from K2La2Ti3O10 via exfoliation and restacking routes (박리화와 재적층법을 통한 K2La2Ti3O10부터 유전성 Bi4-xLaxTi3O12(x~2)의 합성)

  • Jeon, A Young;Ko, Jieun;Kim, Jong-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.14-19
    • /
    • 2013
  • We have successfully synthesized $Bi_{4-x}La_xTi_3O_{12}$ (x~2) having Aurivillius-type layered perovskite structure from exfoliated layered perovskite oxide of $K_2La_2Ti_3O_{10}$ with Ruddlesden-Popper structure. The reaction between the exfoliated lanthanum titanate nanosheets and BiOCl nanocrystal resulted in the formation of polycrystalline $Bi_{4-x}La_xTi_3O_{12}$ (x~2) after heating above $700^{\circ}C$. Colloidal suspension of the nanosheets could be obtained by intercalating ethylamine (EA) into the protonated lanthanum titanate, $H_2La_2Ti_3O_{10}$, derived from $K_2La_2Ti_3O_{10}$. Transmission electron microscopic (TEM) analysis show that the exfoliated lanthanium titanate nanosheets have a thickness of a few nano meters. According to X-ray diffraction (XRD) analysis, the exfoliated lanthanium titanate was found to be transformed into $Bi_{4-x}La_xTi_3O_{12}$ (x~2) after restacking with BiOCl and subsequent thermal treatment at > $700^{\circ}C$.

ENERGY TRANSFER PROCESS BETWEEN $Ce^{3+}$ AND $Tb^{3+}$ IN LaOCl HOST

  • Kim, Taesam;Sung, Hakje;Kim, Kunhan;Ha, Younggu;Chang, Joowhan;Song, Sunho
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.319-328
    • /
    • 1993
  • Energy transfer process between $Tb^{3+}$ and $Ce^{3+}$ has been studied in LaOCl host. The energy absorbed by $Ce^{3+}$ transfers to $Tb^{3+}$ which has levels emitting strong fluorescence. The probability of energy transfer depends strongly on the concentration or the distance of activator ions. While the energy transferred on $Tb^{3+}$ emits from $^5D_3$ level at low concentration of $Ce^{3+}$, the energy goes back to $Ce^{3+}$(Back Transfer) and then emits from low levels of $Ce^{3+}$ and $Tb^{3+}$ at the high concentration. The Back Transfer process has been identified by the experiment with varying the concentration of the activator, $Ce^{3+}$. The relaxation is more effective if $Ce^{3+}$ intermediates than if not.

  • PDF