• Title/Summary/Keyword: L_BFGS_B

Search Result 3, Processing Time 0.019 seconds

Application of a Hydroinformatic System for Calibration of a Catchment Modelling System (강우-유출모형의 검정을 위한 수문정보시스템의 적용)

  • Choi, Kyung-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2003
  • A new methodology for selecting spatially variable model control parameter values through consideration of inference models within a Hydroinformatic system has been developed to overcome problems associated with determination of spatially variable control parameter values for both ungauged and gauged catchment. The adopted Hydroinformatic tools for determination of control parameter values were a GIS(Arc/Info) to handle spatial and non-spatial attribute information, the SWMM(stormwater management model) to simulate catchment response to hydrologic events, and lastly, L_BFGS_B(a limited memory quasi-Newton algorithm) to assist in the calibration process. As a result, high accuracy of control parameter estimation was obtained by considering the spatial variations of the control parameters based on landuse characteristics. Also, considerable time and effort necessary for estimating a large number of control parameters were reduced from the new calibration approach.

  • PDF

Neural Network Analysis of Determinants Affecting Purchase Decisions in Fashion Eyewear (신경망분석기법을 이용한 패션 아이웨어 구매결정요소에 관한 연구)

  • Kim Ji Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.163-171
    • /
    • 2024
  • This study applies neural network analysis techniques to examine the factors influencing the purchasing decisions of fashion eyewear among women in their 30s and 40s, comparing these findings with traditional parametric analysis methods. In the fashion area, machine learning techniques are utilized for personalized fashion recommendation systems. However, research on such applications in Korea remains insufficient. By reanalyzing a study conducted in 2017 using traditional quantitative methods with these new techniques, this study aims to confirm the utility of neural network methods. Notably, the study finds that the classification accuracy of preferred sunglasses design is highest, at 86.2%, when the L-BFGS-B neural network is activated using the hyperbolic tangent function. The most critical factors influencing purchasing decisions were consumers' occupations and their pursuit of new styles. It is interpreted that Korean sunglasses consumers prefer "safe changes." These findings are consistent for selecting both the frames and lenses of sunglasses. Traditional quantitative analysis suggests that the type of sunglasses preferred varies according to the group to which a consumer belongs. In contrast, neural network analysis predicts the preferred sunglasses for each individual, thereby facilitating the development of personalized sunglasses recommendation systems.

FCBAFL: An Energy-Conserving Federated Learning Approach in Industrial Internet of Things

  • Bin Qiu;Duan Li;Xian Li;Hailin Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2764-2781
    • /
    • 2024
  • Federated learning (FL) has been proposed as an emerging distributed machine learning framework, which lowers the risk of privacy leakage by training models without uploading original data. Therefore, it has been widely utilized in the Industrial Internet of Things (IIoT). Despite this, FL still faces challenges including the non-independent identically distributed (Non-IID) data and heterogeneity of devices, which may cause difficulties in model convergence. To address these issues, a local surrogate function is initially constructed for each device to ensure a smooth decline in global loss. Subsequently, aiming to minimize the system energy consumption, an FL approach for joint CPU frequency control and bandwidth allocation, called FCBAFL is proposed. Specifically, the maximum delay of a single round is first treated as a uniform delay constraint, and a limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm is employed to find the optimal bandwidth allocation with a fixed CPU frequency. Following that, the result is utilized to derive the optimal CPU frequency. Numerical simulation results show that the proposed FCBAFL algorithm exhibits more excellent convergence compared with baseline algorithm, and outperforms other schemes in declining the energy consumption.