• Title/Summary/Keyword: LU5

Search Result 713, Processing Time 0.035 seconds

The impact of chronic insomnia disorder on menstruation and ovarian reserve in childbearing-age women: A cross-sectional study

  • Minmin Gong;Yang Gao;Zhi Wang;Fuer Lu;Hui Dong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.2
    • /
    • pp.142-150
    • /
    • 2024
  • Objective: Diminished ovarian reserve (DOR) is a disorder characterized by impaired ovarian function. Sleep disorders are disruptions of the circadian rhythm, which appears to be closely linked to reproductive systems. This study aimed to investigate the impact of poor sleep quality on the ovarian reserve of childbearing-age women. Methods: A cross-sectional study was conducted in China from June 2021 to March 2023. In total, 102 participants diagnosed with chronic insomnia disorder were included in the study. Questionnaires were administered to assess participants' menstrual patterns, insomnia severity, anxiety, and depression. The anti-Müllerian hormone level and the basal antral follicle count were measured for ovarian reserve evaluation. Correlation analysis and ordinal logistic regression analysis were conducted. Results: The women with insomnia presented high percentages of hypomenorrhea, premenstrual syndrome, and dysmenorrhea (78.4%, 74.5%, and 46.1%, respectively). Severe sleep disorder in the past month was identified as an independent risk factor for hypomenorrhea and premenstrual syndrome (odds ratio [OR], 2.64 and OR, 2.688; p<0.05). The prevalence of DOR among women with insomnia (33.3%) was significantly higher than the average reported in previous studies for young women. Insomnia duration exceeding 1 year was determined to be an independent risk factor for DOR in women aged 36 to 40 years (OR, 4.5; p=0.033). Conclusion: This study highlights the association between sleep disorders and menstrual problems. Prolonged poor sleep quality in women aged 36 to 40 years was identified as a significant risk factor for DOR. We should pay more attention to improving sleep quality in order to maintain normal ovarian function.

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.

A state of review on manufacturing and effectiveness of ultra-high-performance fiber reinforced concrete for long-term integrity of concrete structures

  • Dongmei Chen;Yueshun Chen;Lu Ma;Md. Habibur Rahman Sobuz;Md. Kawsarul Islam Kabbo;Md. Munir Hayet Khan
    • Advances in concrete construction
    • /
    • v.17 no.5
    • /
    • pp.293-310
    • /
    • 2024
  • Ultra-high-performance fiber-reinforced concrete (UHPFRC) is a form of cement-based material that has a compressive strength above 150 MPa, excellent ductility, and superior durability. This composite material demonstrates innovation and has the potential to serve as a viable substitute for concrete constructions that are subjected to harsh environmental conditions. Over many decades, extensive research and progressive efforts have introduced several commercial UHPFRC compositions globally. These compositions have been specifically designed to cater to an increasing variety of applications and meet the rising need for building materials of superior quality. However, the effective manufacturing of UHPFRC relies on the composition of its materials, especially the inclusion of fiber content and the proportions in the mixture, resulting in a more compact and comparatively uniform packing of particles. UHPFRC has notable benefits in comparison to conventional concrete, yet its use is constrained by the dearth of design codes and the prohibitive expenses associated with its implementation. The study demonstrates that UHPFRC presents a viable, long-lasting option for improving sustainable construction. This is attributed to its outstanding strength properties and superior durability in resisting water and chloride ion permeability, freeze-thaw cycles, and carbonation. The analysis found that a rheology-based mixture design technique may be employed in the production of UHPFRC to provide enough flowability. The study also revealed that the use of deformed steel fibers has shown enhanced mechanical qualities in comparison to straight steel fibers. However, obstacles such as higher initial costs, the requirement for highly specialized personnel, and the absence of comprehensive literature on global UHPFRC standards that establish minimum strength criteria and testing requirements can hinder the widespread implication of UHPFRC. Finally, this review attempts to deepen our foundational conception of UHPFRC, encourages additional study and applications, and recommends an in-depth investigation of the mechanical and durability properties of UHPFRC to maximize its practicality.

MicroRNA-3200-5p Promotes Osteosarcoma Cell Invasion via Suppression of BRMS1

  • Li, Gen;Li, Li;Sun, Qi;Wu, Jiezhou;Ge, Wei;Lu, Guanghua;Cai, Ming
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.523-531
    • /
    • 2018
  • Tumour metastasis is one of the most serious challenges of cancer as it is the major cause of mortality in patients with solid tumours, including osteosarcoma (OS). In this regard, anti-metastatic genes have potential for metastasis inhibition strategies. Recent evidence showed the importance of breast cancer metastasis suppressor 1 (BRMS1) in control of OS invasiveness, but the regulation of BRMS1 in OS remains largely unknown. Here, we used bioinformatics analyses to predict BRMS1-targeting microRNAs (miRNAs), and the functional binding of miRNAs to BRMS1 mRNA was evaluated using a dual luciferase reporter assay. Among all BRMS1-targeting miRNAs, only miR-151b, miR-7-5p and miR-3200-5p showed significant expression in OS specimens. Specifically, we found that only miR-3200-5p significantly inhibited protein translation of BRMS1 via pairing to the 3'-UTR of the BRMS1 mRNA. Moreover, we detected significantly lower BRMS1 and significantly higher miR-3200-5p in the OS specimens compared to the paired adjacent non-tumour bone tissues. Furthermore, BRMS1 and miR-3200-5p levels were inversely correlated to each other. Low BRMS1 was correlated with metastasis and poor patient survival. In vitro, overexpression of miR-3200-5p significantly decreased BRMS1 levels and promoted OS cell invasion and migration, while depletion of miR-3200-5p significantly increased BRMS1 levels and inhibited OS cell invasion and migration. Thus, our study revealed that miR-3200-5p may be a critical regulator of OS cell invasiveness.

Inhibition of L-type Ca2+ current by ginsenoside Rd in rat ventricular myocytes

  • Lu, Cheng;Sun, Zhijun;Wang, Line
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.169-177
    • /
    • 2015
  • Background: Ginsenoside Rd (GSRd), one of the most abundant ingredients of Panax ginseng, protects the heart via multiple mechanisms including the inhibition of $Ca^{2+}$ influx.We intended to explore the effects of GSRd on L-type $Ca^{2+}$ current ($I_{Ca,L}$) and define the mechanism of the suppression of $I_{Ca,L}$ by GSRd. Methods: Perforated-patch recording and whole-cell voltage clamp techniques were applied in isolated rat ventricular myocytes. Results: (1) GSRd reduced $I_{Ca,L}$ peak amplitude in a concentration-dependent manner [half-maximal inhibitory concentration $(IC_{50})=32.4{\pm}7.1{\mu}mol/L$] and up-shifted the current-voltage (I-V) curve. (2) GSRd ($30{\mu}mol/L$) significantly changed the steady-state activation curve of $I_{Ca,L}$ ($V_{0.5}:-19.12{\pm}0.68$ vs. $-6.26{\pm}0.38mV$; n = 5, p < 0.05) and slowed down the recovery of $I_{Ca,L}$ from inactivation [the time content (${\zeta}$) from 91 ms to 136 ms, n = 5, p < 0.01]. (3) A more significant inhibitive effect of GSRd ($100{\mu}mol/L$) was identified in perforated-patch recording when compared with whole-cell recording [$65.7{\pm}3.2%$ (n = 10) vs. $31.4{\pm}5.2%$ (n = 5), p < 0.01]. (4) Pertussis toxin ($G_i$ protein inhibitor) completely abolished the $I_{Ca,L}$ inhibition induced by GSRd. There was a significant difference in inhibition potency between the two cyclic adenosine monophosphate elevating agents (isoprenaline and forskolin) prestimulation [$55{\pm}7.8%$ (n = 5) vs. $17.2{\pm}3.5%$ (n = 5), p < 0.01]. (5) 1H-[1,2,4]Oxadiazolo[4,3-a]-quinoxalin-1-one (a guanylate cyclase inhibitor) and N-acetyl-$\small{L}$-cysteine (a nitric oxide scavenger) partly recovered the $I_{Ca,L}$ inhibition induced by GSRd. (6) Phorbol-12-myristate-13-acetate (a protein kinase C activator) and GF109203X (a protein kinase C inhibitor) did not contribute to the inhibition of GSRd. Conclusion: These findings suggest that GSRd could inhibit $I_{Ca,L}$ through pertussis toxin-sensitive G protein ($G_i$) and a nitric oxide-cyclic guanosine monophosphate-dependent mechanism.

Regulation of chicken vanin1 gene expression by peroxisome proliferators activated receptor α and miRNA-181a-5p

  • Wang, Zhongliang;Yu, Jianfeng;Hua, Nan;Li, Jie;Xu, Lu;Yao, Wen;Gu, Zhiliang
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.172-184
    • /
    • 2021
  • Objective: Vanin1 (VNN1) is a pantetheinase that can catalyze the hydrolysis of pantetheine to produce pantothenic acid and cysteamine. Our previous studies showed that VNN1 is specifically expressed in chicken liver. In this study, we aimed to investigate the roles of peroxisome proliferators activated receptor α (PPARα) and miRNA-181a-5p in regulating VNN1 gene expression in chicken liver. Methods: 5'-RACE was performed to identify the transcription start site of chicken VNN1. JASPAR and TFSEARCH were used to analyze the potential transcription factor binding sites in the promoter region of chicken VNN1 and miRanda was used to search miRNA binding sites in 3' untranslated region (3'UTR) of chicken VNN1. We used a knock-down strategy to manipulate PPARα (or miRNA-181a-5p) expression levels in vitro to further investigate its effect on VNN1 gene transcription. Luciferase reporter assays were used to explore the specific regions of VNN1 targeted by PPARα and miRNA-181a-5p. Results: Sequence analysis of the VNN1 promoter region revealed several transcription factor-binding sites, including hepatocyte nuclear factor 1α (HNF1α), PPARα, and CCAAT/enhancer binding protein α. GW7647 (a specific agonist of PPARα) increased the expression level of VNN1 mRNA in chicken primary hepatocytes, whereas knockdown of PPARα with siRNA increased VNN1 mRNA expression. Moreover, the predicted PPARα-binding site was confirmed to be necessary for PPARα regulation of VNN1 gene expression. In addition, the VNN1 3'UTR contains a sequence that is completely complementary to nucleotides 1 to 7 of miRNA-181a-5p. Overexpression of miR-181a-5p significantly decreased the expression level of VNN1 mRNA. Conclusion: This study demonstrates that PPARα is an important transcriptional activator of VNN1 gene expression and that miRNA-181a-5p acts as a negative regulator of VNN1 expression in chicken hepatocytes.

Physiological Responses and Lactation to Cutaneous Evaporative Heat Loss in Bos indicus, Bos taurus, and Their Crossbreds

  • Jian, Wang;Ke, Yang;Cheng, Lu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1558-1564
    • /
    • 2015
  • Cutaneous evaporative heat loss in Bos indicus and Bos taurus has been well documented. Nonetheless, how crossbreds with different fractional genetic proportions respond to such circumstances is of interest. A study to examine the physiological responses to cutaneous evaporative heat loss, also lactation period and milk yield, were conducted in Sahiwal (Bos indicus, n = 10, $444{\pm}64.8kg$, $9{\pm}2.9years$), Holstein Friesian (Bos taurus, HF100% (n = 10, $488{\pm}97.9kg$, $6{\pm}2.8years$)) and the following crossbreds: HF50% (n = 10, $355{\pm}40.7kg$, $2{\pm}0years$) and HF87.5% (n = 10, $489{\pm}76.8kg$, $7{\pm}1.8years$). They were allocated so as to determine the physiological responses of sweating rate (SR), respiration rate (RR), rectal temperature (RT), and skin temperature (ST) with and without hair from 06:00 h am to 15:00 h pm. And milk yield during 180 days were collected at days from 30 to 180. The ambient temperature-humidity-index (THI) increased from less than 80 in the early morning to more than 90 in the late afternoon. The interaction of THI and breed were highly affected on SR, RR, RT, and ST (p<0.01). The SR was highest in Sahiwal ($595g/m^2/h$) compared to HF100% ($227g/m^2/h$), and their crossbreds both HF50% ($335g/m^2/h$) and HF87.5% ($299g/m^2/h$). On the other hand, RR was higher in HF87.5% (54 bpm) and both HF100% (48 bpm) and HF50% (42 bpm) than Sahiwal (25 bpm) (p<0.01). The RT showed no significant differences as a result of breed (p>0.05) but did change over time. The ST with and without hair were similar, and was higher in HF100% ($37.4^{\circ}C$; $38.0^{\circ}C$) and their crossbred HF50% ($35.5^{\circ}C$; $35.5^{\circ}C$) and HF87.5% ($37.1^{\circ}C$; $37.9^{\circ}C$) than Sahiwal ($34.8^{\circ}C$; $34.8^{\circ}C$) (p<0.01). Moreover, the early lactation were higher at HF100% (25 kg) and 87.5% (25 kg) than HF50% (23 kg) which were higher than Sahiwal (18 kg) while the peak period of lactation was higher at HF100% (35 kg) than crossbreds both HF87.5% and HF50% (32 kg) which was higher than Sahiwal (26 kg) (p<0.05). In conclusion, sweating and respiration were the main vehicle for dissipating excess body heat for Sahiwal, HF and crossbreds, respectively. The THI at 76 to 80 were the critical points where the physiological responses to elevated temperature displayed change.

Phase II Trial of Loubo® (Lobaplatin) and Pemetrexed for Patients with Metastatic Breast Cancer not Responding to Anthracycline or Taxanes

  • Deng, Qian-Qian;Huang, Xin-En;Ye, Li-Hong;Lu, Yan-Yan;Liang, Yong;Xiang, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.413-417
    • /
    • 2013
  • Purpose: This phase II study was undertaken to determine the efficacy and safety of Loubo$^{(R)}$ (Lobaplatin) in combination with pemetrexed in treating patients with metastatic breast cancer who failed to respond to anthracycline or taxanes. Patients and Methods: Metastatic breast cancer cases who had previously received an anthracycline and a taxane in either adjuvant or metastatic settings, were enrolled. All patients were recruited from Jiangsu Cancer Hospital and Research Institute, and were treated with Loubo$^{(R)}$ (Lobaplatin) 35 $mg/m^2$ (intravenous; on day 1) and pemetrexed 500 $mg/m^2$ (intravenous; on day 1) every 21 days. Efficacy and side effects were evaluated after at least two cycles of chemotherapy. Results: All eligible 19 patients completed at least 2 cycles of chemotherapy with pemetrexed and lobaplatin, and were evaluable. Overall, 3 (15.8%) patients achieved partial response, 11 (57.9%) stable disease, 5 (26.3%) progression of disease, with no complete remission. Response rate was 15.8%, disease control rate was 42.1%. The median survival time was 10.3 months. Neutrophil suppression occurred in 36.8% of patients who had grade 2 toxicity, and 26.3% had grade 3, 26.4% had grade 4. Thrombocytopenia was encountered as follows: 21.1% grade 2, 15.8% grade 3 and 5.5% grade 4. Incidences of anemia were 10.5% in grade 2, 5.3% grade 3 and 0% grade 4. Only 5.3% of patients required packed red blood cell transfusion. Grade 3 digestive tract toxicity occurred in 5.5% of patients. Other toxicities included elevated transaminase,oral mucositis and skin rashes. Conclusions: The regimen of lobaplatin and pemetrexed is modestly active in metastatic breast cancer patients who failed anthracycline or taxanes, and the toxicity profile suggesting that the doses of chemotherapy should be further modified.

Inhibitory Effects of 3-Bromopyruvate on Human Gastric Cancer Implant Tumors in Nude Mice

  • Xian, Shu-Lin;Cao, Wei;Zhang, Xiao-Dong;Lu, Yun-Fei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3175-3178
    • /
    • 2014
  • Background: Gastric cancer is a common malignant tumor. Our previous study demonstrated inhibitory effects of 3-bromopyruvate (3-BrPA) on pleural mesothelioma. Moreover, we found that 3-BrPA could inhibit human gastric cancer cell line SGC-7901 proliferation in vitro, but whether similar effects might be exerted in vivo have remained unclear. Aim: To investigate the effect of 3-BrPA to human gastric cancer implant tumors in nude mice. Materials and Methods: Animals were randomly divided into 6 groups: 3-BrPA low, medium and high dose groups, PBS negative control group 1 (PH7.4), control group 2 (PH 6.8-7.8) and positive control group receiving 5-FU. The TUNEL method was used to detect apoptosis, and cell morphology and structural changes of tumor tissue were observed under transmission electron microscopy (TEM). Results: 3-BrPA low, medium, high dose group, and 5-FU group, the tumor volume inhibition rates were 34.5%, 40.2%, 45.1%, 47.3%, tumor volume of experimental group compared with 2 PBS groups (p<0.05), with no significant difference between the high dose and 5-FU groups (p>0.05). TEM showed typical characteristics of apoptosis. TUNEL demonstrated apoptosis indices of 28.7%, 39.7%, 48.7% for the 3-BrPA low, medium, high dose groups, 42.2% for the 5-FU group and 5% and 4.3% for the PBS1 (PH7.4) and PBS2 (PH6.8-7.8) groups. Compared each experimental group with 2 negative control groups, there was significant difference (p<0.05); there was no significant difference between 5-FU group and medium dose group (p>0.05), but there was between the 5-FU and high dose groups (p<0.05). Conclusions: This study indicated that 3-BrPA in vivo has strong inhibitory effects on human gastric cancer implant tumors in nude mice.

Development and Characterization of an Anti-Acne Gel Containing Siamese Crocodile (Crocodylus siamensis) Leukocyte Extract

  • Phupiewkham, Weeraya;Lu, Qiumin;Payoungkiattikun, Wisarut;Temsiripong, Threeranan;Jangpromma, Nisachon;Lai, Ren;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.707-717
    • /
    • 2018
  • Leukocytes are reportedly the first line of the innate immune defense and essential for the control of common bacterial infections. Therefore, in this work, the antibacterial activity of crocodile leukocyte extract against Propionibacterium acnes was evaluated, and we also characterized the related activity of skin infection. The leukocyte extract showed the minimum inhibitory concentration to be $100{\mu}g/ml$ to P. acnes. SEM imaging demonstrated that the leukocyte extract adversely affected P. acnes cell permeability in a concentration-dependent manner. Furthermore, the crocodile leukocyte extract could significantly reduce proinflammatory markers and decrease inflammatory signs in infected mouse ears. The crude leukocyte extract was further purified using FPLC and RP-HPLC. The resulting fraction F5 was indicated as the anti-acne peptide-containing fraction. The molecular mass of the peptide contained in F5 was calculated to be 4,790.5 Da. N-Terminal sequencing revealed the amino acid sequence as GPEPVPAIYQ, which displays similarities to immunoglobulin A and leucine-rich repeat neuronal protein. This is the first reported amino acid sequence of a crocodile leukocyte extract that possesses anti-acne activity. To attempt to use it in a prototype cosmetic, an anti-acne gel containing crude crocodile leukocyte extract was formulated, resulting in seven gel formulations (G1, G2, G3, G4, G5, G6, and G7). The formulations G5, G6, and G7 exhibited 2-fold higher anti-acne activity than G1-G4. Investigation of accelerating stability studies of anti-acne gel formulations G5, G6, and G7 demonstrated that a low storage temperature ($4^{\circ}C$) is suitable for maintaining the physical properties and biological activity of the anti-acne gel products.