• Title/Summary/Keyword: LTQ-FT MS

Search Result 6, Processing Time 0.02 seconds

LC-MS/MS Analysis of Surface Layer Proteins as a Useful Method for the Identification of Lactobacilli from the Lactobacillus acidophilus Group

  • Podlesny, Marcin;Jarocki, Piotr;Komon, Elwira;Glibowska, Agnieszka;Targonski, Zdzislaw
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.421-429
    • /
    • 2011
  • For precise identification of a Lactobacillus K1 isolate, LC-MS/MS analysis of the putative surface layer protein was performed. The results obtained from LTQ-FT-ICR mass spectrometry confirmed that the analyzed protein spot is the surface layer protein originating from Lb. helveticus species. Moreover, the identified protein has the highest similarity with the surface layer protein from Lb. helveticus R0052. To evaluate the proteomic study, multilocus sequence analysis of selected housekeeping gene sequences was performed. Combination of 16S rRNA sequencing with partial sequences for the genes encoding the RNA polymerase alpha subunit (rpoA), phenylalanyl-tRNA synthase alpha subunit (pheS), translational elongation factor Tu (tuf), and Hsp60 chaperonins (groEL) also allowed to classify the analyzed isolate as Lb. helveticus. Further classification at the strain level was achieved by sequencing of the slp gene. This gene showed 99.8% identity with the corresponding slp gene of Lb. helveticus R0052, which is in good agreement with data obtained by nano-HPLC coupled to an LTQ-FT-ICR mass spectrometer. Finally, LC-MS/MS analysis of surface layer proteins extracted from three other Lactobacillus strains proved that the proposed method is the appropriate molecular tool for the identification of S-layer-possessing lactobacilli at the species and even strain levels.

Proteome analysis of sorghum (Sorghum bicolor L.) leaf in response to waterlogging stress

  • Yun, Min-Heon;Park, Hyeong-Jun;Jeong, Hae-Ryong;Roy, Swapan Kumar;Kwon, Soo Jeong;Chun, Hyen Chung;Cho, Seong-Woo;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.119-119
    • /
    • 2017
  • Growth related to morphological and proteome response under waterlogging stress in sorghum has not yet been elucidated. Understanding how plants respond to waterlogging, the present study was conducted in seedlings leaf of the Nam-pung chal cultivar. Regarding 3-leaf stage of sorghum, stem length and plant height were slightly decreased in the treatments during ten days of waterlogging, and chlorophyll contents were also significantly different from 7 days of waterlogging treatment. The results observed from the present study were considered to be influenced by the waterlogging stress more in the $5^{th}$ leaf stage of the growth period of the sorghum, and as the waterlogging treatment progressed, the waterlogging stress gradually influenced the growth difference between the control and the treatment respectively. Using 2-DE method, a total of 74 differentially expressed protein spots were analyzed using LTQ-FT-ICR MS. Of these proteins, 45 proteins were up-regulated in the treatment group, and 32 proteins were down-regulated. Analysis of LTQ-FI-ICR MS showed that about 50% of the proteins involved in carbohydrate metabolic process, metabolic process, and cellular metabolic compound salvage were affected by stress. Malate dehydrogenase protein and Glyceraldehyde-3-phosphate dehydrogenase protein related to carbohydrate metabolic process increased the level of protein expression in both 3 and 5-leaf stage under waterlogging stress. The increased abundance of these proteins may play an active role in response to waterlogging stress. These results provide new insights into the morphological alteration and modulation of differentially expressed proteins in sorghum cultivar.

  • PDF

Quantitative Phosphoproteomics of the Human Neural Stem Cell Differentiation into Oligodendrocyte by Mass Spectrometry

  • Cho, Kun;Kim, Jin Young;Kim, Eunmin;Park, Gun Wook;Kang, Tae Wook;Yoon, Jung Hae;Kim, Seung U.;Byun, Kyunghee;Lee, Bonghee;Yoo, Jong Shin
    • Mass Spectrometry Letters
    • /
    • v.3 no.4
    • /
    • pp.93-100
    • /
    • 2012
  • Cellular processes such as proliferation, differentiation, and adaptation to environmental changes are regulated by protein phosphorylation. In order to enhance the understanding of molecular dynamics for biological process in detail, it is necessary to develop sensitive and comprehensive analytical methods for the determination of protein phosphorylation. Neural stem cells hold great promise for neural repair following an injury or disease. In this study, we made differentiated oligodendrocytes from human neural stem cells using over-expression of olig2 gene. We confirmed using quantitative phosphoproteome analysis approach that combines stable isotope labeling by amino acids in cell culture (SILAC) and $TiO_2$ micro-column for phosphopeptide enrichment with $MS^2$ and $MS^3$ mass spectrometry. We detected 275 phosphopeptides which were modulated at least 2-fold between human neural stem cells and oligodendrocytes. Among them, 23 phosphoproteins were up-regulated in oligodendrocytes and 79 phosphoproteins were up-regulated in F3 cells.

Reinterpretation of the protein identification process for proteomics data

  • Kwon, Kyung-Hoon;Lee, Sang-Kwang;Cho, Kun;Park, Gun-Wook;Kang, Byeong-Soo;Park, Young-Mok
    • Interdisciplinary Bio Central
    • /
    • v.1 no.3
    • /
    • pp.9.1-9.6
    • /
    • 2009
  • Introduction: In the mass spectrometry-based proteomics, biological samples are analyzed to identify proteins by mass spectrometer and database search. Database search is the process to select the best matches to the experimental mass spectra among the amino acid sequence database and we identify the protein as the matched sequence. The match score is defined to find the matches from the database and declare the highest scored hit as the most probable protein. According to the score definition, search result varies. In this study, the difference among search results of different search engines or different databases was investigated, in order to suggest a better way to identify more proteins with higher reliability. Materials and Methods: The protein extract of human mesenchymal stem cell was separated by several bands by one-dimensional electrophorysis. One-dimensional gel was excised one by one, digested by trypsin and analyzed by a mass spectrometer, FT LTQ. The tandem mass (MS/MS) spectra of peptide ions were applied to the database search of X!Tandem, Mascot and Sequest search engines with IPI human database and SwissProt database. The search result was filtered by several threshold probability values of the Trans-Proteomic Pipeline (TPP) of the Institute for Systems Biology. The analysis of the output which was generated from TPP was performed. Results and Discussion: For each MS/MS spectrum, the peptide sequences which were identified from different conditions such as search engines, threshold probability, and sequence database were compared. The main difference of peptide identification at high threshold probability was caused by not the difference of sequence database but the difference of the score. As the threshold probability decreases, the missed peptides appeared. Conversely, in the extremely high threshold level, we missed many true assignments. Conclusion and Prospects: The different identification result of the search engines was mainly caused by the different scoring algorithms. Usually in proteomics high-scored peptides are selected and low-scored peptides are discarded. Many of them are true negatives. By integrating the search results from different parameter and different search engines, the protein identification process can be improved.

Comparative proteome analysis of rice leaves in response to high temperature

  • Kim, Sang-Woo;Roy, Swapan Kumar;Kwon, Soo Jeong;Cho, Seong-Woo;Cho, Yong-Gu;Lee, Chul-Won;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.121-121
    • /
    • 2017
  • The productivity of rice has been influenced by various abiotic factors including temperature which cause to limitations to rice yield and quality. Rice yield and quality are adversely affected by high temperature globally. In the present study, four Korean four cultivars such as Dongan, Ilpum, Samkwang, Chucheong were investigated in order to explore molecular mechanisms of high temperature at seedling stage. Rice seedlings grown at $28/20^{\circ}C$ (day/night) were subjected to 7-day exposure to $38/28^{\circ}C$ for high-temperature stress, followed by 2-D based proteomic analysis on biological triplicates of each treatment. The growth characteristics demonstrated that Dongan is tolerant while Ilpum is sensitive to high-temperature stress. High temperature has an adverse effect in the seedling stage both in high temperature sensitive and tolerant cultivar. Two-dimensional gels stained with silver staining, a total of 722 differential expressed protein spots (${\geq}1.5-fold$) were identified using Progenesis SameSpot software. However, a total of 38 differentially expressed protein spots were analyzed by LTQ-FT-ICR MS. Of these, 9 proteins were significantly increased while 10 decreased under high-temperature treatment. Significant changes were associated with the proteins involved in the carbohydrate metabolism, photosynthesis, and stress responses. Proteome results revealed that high-temperature stress had an inhibitory effect on carbon fixation, ATP production, and photosynthetic machinery pathway. The expression level of mRNA is significantly correlated with the results obtained in the proteome investigation. Taken together, these findings provide a better understanding of the high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch.

  • PDF

Proteome Characterization of Sorghum (Sorghum bicolor L.) at Vegetative Stage under Waterlogging Stress (토양 과습 조건하에서 수수 잎의 단백질 양상)

  • Yun, Min Heon;Jeong, Hae-Ryong;Yoo, Jang-Hwan;Roy, Swapan Kumar;Kwon, Soo-Jeong;Kim, Joo-Ho;Chun, Hyen Chung;Jung, Ki Yuol;Cho, Seong-Woo;Woo, Sun-Hee
    • Korean Journal of Plant Resources
    • /
    • v.31 no.2
    • /
    • pp.124-135
    • /
    • 2018
  • The study was performed to explore the molecular changes in the vegetative stage (3-and 5-leaf) of sorghum under waterlogging stress. A total of 74 differentially expressed protein spots were analyzed using LTQ-FT-ICR MS. Among them, 12 proteins were up-regulated and 3 proteins were down-regulated. Mass spectrometry (MS) results showed that about 50% of the proteins involved in various metabolic processes. The level of protein expression of malate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase related to carbohydrate metabolic process increased in both 3 and 5-leaf stage under waterlogging stress. These proteins are known to function as antistress agents against waterlogging stress. The expression of oxygen-evolving enhancer protein 1 protein related to photosynthesis was slightly increased in the treated group than in the control group, however the expression level was increased in the 5-leaf stage compared to the 3-leaf stage. Probable phospholipid hydroperoxide glutathione peroxidase protein and superoxide dismutase protein related to response to oxidative stress showed the highest expression level in 5-leaf stage treatment. This suggests that the production of reactive oxygen species by the waterlogging stress was the most abundant in the 5-leaf treatment group, and the expression of the antioxidant defense protein was increased.