DOI QR코드

DOI QR Code

Quantitative Phosphoproteomics of the Human Neural Stem Cell Differentiation into Oligodendrocyte by Mass Spectrometry

  • Cho, Kun (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Kim, Jin Young (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Kim, Eunmin (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Park, Gun Wook (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Kang, Tae Wook (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Yoon, Jung Hae (Research Institute at Nationwide Children's Hospital) ;
  • Kim, Seung U. (Department of Medicine, University of British Columbia) ;
  • Byun, Kyunghee (Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science) ;
  • Lee, Bonghee (Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science) ;
  • Yoo, Jong Shin (Division of Mass Spectrometry Research, Korea Basic Science Institute)
  • Received : 2012.12.07
  • Accepted : 2012.12.24
  • Published : 2012.12.31

Abstract

Cellular processes such as proliferation, differentiation, and adaptation to environmental changes are regulated by protein phosphorylation. In order to enhance the understanding of molecular dynamics for biological process in detail, it is necessary to develop sensitive and comprehensive analytical methods for the determination of protein phosphorylation. Neural stem cells hold great promise for neural repair following an injury or disease. In this study, we made differentiated oligodendrocytes from human neural stem cells using over-expression of olig2 gene. We confirmed using quantitative phosphoproteome analysis approach that combines stable isotope labeling by amino acids in cell culture (SILAC) and $TiO_2$ micro-column for phosphopeptide enrichment with $MS^2$ and $MS^3$ mass spectrometry. We detected 275 phosphopeptides which were modulated at least 2-fold between human neural stem cells and oligodendrocytes. Among them, 23 phosphoproteins were up-regulated in oligodendrocytes and 79 phosphoproteins were up-regulated in F3 cells.

Keywords

References

  1. Morandell, S.; Stasyk, T.; Grosstessner-Hain, K.; Roitinger, E.; Mechtler, K.; Bonn, G. K. Proteomics 2006, 6, 4047. https://doi.org/10.1002/pmic.200600058
  2. Reinders, J.; Sickmann, A. Proteomics 2005, 5, 4052. https://doi.org/10.1002/pmic.200401289
  3. Graves, J. D.; Krebs, E. G. Pharmacol Ther. 1999, 82, 111. https://doi.org/10.1016/S0163-7258(98)00056-4
  4. Hunter, T. Cell 2000, 100, 113. https://doi.org/10.1016/S0092-8674(00)81688-8
  5. Thingholm, T. E.; Jensen, O. N.; Larsen, M. R. Proteomics 2009, 9, 1451. https://doi.org/10.1002/pmic.200800454
  6. Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S. Science 2002, 298, 1912. https://doi.org/10.1126/science.1075762
  7. Venter, J. C.; Adams, M. D.; Myers, E. W.; Li, P. W.; Mural, R. J.; Sutton, G. G. et al., Science. 2001, 291, 1304. https://doi.org/10.1126/science.1058040
  8. Zhang, H.; Zha, X.; Tan, Y.; Hornbeck, P. V.; Mastrangelo, A. J.; Alessi, D. R.; et al., J. Biol. Chem. 2002, 277, 39379. https://doi.org/10.1074/jbc.M206399200
  9. Boersema, P. J.; Mohammed, S.; Heck, A. J. J. Mass Spectrom. 2009, 44, 861. https://doi.org/10.1002/jms.1599
  10. Ficarro, S.; Chertihin, O.; Westbrook, V. A.; White, F.; Jayes, F.; Kalab, P. et al., J. Biol. Chem. 2003, 278, 11579. https://doi.org/10.1074/jbc.M202325200
  11. Larsen, M. R.; Thingholm, T. E.; Jensen, O. N.; Roepstorff, P.; Jorgensen, T. J. Mol. Cell Proteomics 2005, 4, 873. https://doi.org/10.1074/mcp.T500007-MCP200
  12. Pinkse, M. W.; Uitto, P. M.; Hilhorst, M. J.; Ooms, B.; Heck, A. J. Anal. Chem. 2004, 76, 3935. https://doi.org/10.1021/ac0498617
  13. Cao, P.; Stults, J. T. J. Chromatogr. A 1999, 853, 225. https://doi.org/10.1016/S0021-9673(99)00481-1
  14. Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J. et al., Nat. Biotechnol. 2002, 20, 301. https://doi.org/10.1038/nbt0302-301
  15. Nuhse, T. S.; Stensballe, A.; Jensen, O. N.; Peck, S. C. Mol. Cell Proteomics 2003, 2, 1234. https://doi.org/10.1074/mcp.T300006-MCP200
  16. Thingholm, T. E.; Jensen, O. N. Methods Mol. Biol. 2009, 527, 47. https://doi.org/10.1007/978-1-60327-834-8_4
  17. Thingholm, T. E.; Larsen, M. R.; Ingrell, C. R.; Kassem, M.; Jensen, O. N. J. Proteome Res. 2008, 7, 3304. https://doi.org/10.1021/pr800099y
  18. Mazanek, M.; Mituloviae, G.; Herzog, F.; Stingl, C.; Hutchins, J. R.; Peters, J. M. et al., Nat. Protoc. 2007, 2,1059. https://doi.org/10.1038/nprot.2006.280
  19. Swaney, D. L.; Wenger, C. D.; Thomson, J. A.; Coon, J. J. Proc. Nat'l. Acad. Sci. U S A 2009, 106, 995. https://doi.org/10.1073/pnas.0811964106
  20. Prudhomme, W.; Daley, G. Q.; Zandstra, P.; Lauffenburger, D. A. Proc. Nat'l. Acad. Sci. U S A 2004, 101, 2900. https://doi.org/10.1073/pnas.0308768101
  21. Schulz, T. C.; Swistowska, A. M.; Liu, Y.; Swistowski, A.; Palmarini, G.; Brimble, S. N. et al., BMC Genomics 2007, 8, 478. https://doi.org/10.1186/1471-2164-8-478
  22. Puente, L. G.; Borris, D. J.; Carriere, J. F.; Kelly, J. F.; Megeney, L. A. Mol. Cell Proteomics 2006, 5, 57. https://doi.org/10.1074/mcp.M500166-MCP200
  23. Baharvand, H.; Fathi, A.; van Hoof, D.; Salekdeh, G. H. Stem Cells 2007, 25, 1888. https://doi.org/10.1634/stemcells.2007-0107
  24. Kratchmarova, I.; Blagoev, B.; Haack-Sorensen, M.; Kassem, M.; Mann, M. Science 2005, 308, 1472. https://doi.org/10.1126/science.1107627
  25. Jensen, S. S.; Larsen, M. R. Rapid Commun. Mass Spectrom. 2007, 21, 3635. https://doi.org/10.1002/rcm.3254
  26. Motoyama, A.; Xu, T.; Ruse, C. I.; Wohlschlegel, J. A.; Yates, J. R. 3rd. Anal. Chem. 2007, 79, 3623. https://doi.org/10.1021/ac062292d
  27. Ong, S. E.; Mann, M. Methods Mol. Biol. 2007, 359, 37. https://doi.org/10.1007/978-1-59745-255-7_3
  28. Beynon, R. J.; Pratt, J. M. Mol. Cell Proteomics 2005, 4, 857. https://doi.org/10.1074/mcp.R400010-MCP200
  29. Bendall, S. C.; Hughes, C.; Stewart, M. H.; Doble, B.; Bhatia, M.; Lajoie, G. A. Mol. Cell Proteomics 2008, 7, 1587. https://doi.org/10.1074/mcp.M800113-MCP200
  30. Thingholm, T. E.; Jorgensen, T. J.; Jensen, O. N.; Larsen, M. R. Nat. Protoc. 2006, 1, 1929. https://doi.org/10.1038/nprot.2006.185
  31. Bodenmiller, B.; Mueller, L. N.; Mueller, M.; Domon, B.; Aebersold, R. Nat. Methods 2007, 4, 231. https://doi.org/10.1038/nmeth1005
  32. Villen, J.; Beausoleil, S. A.; Gerber, S. A.; Gygi, S. P. Proc. Nat'l. Acad. Sci. U S A 2007, 104, 1488. https://doi.org/10.1073/pnas.0609836104
  33. Yu, L. R.; Chan, K. C.; Tahara, H.; Lucas, D. A. Biochem. Biophys. Res. Commun. 2007, 356, 942. https://doi.org/10.1016/j.bbrc.2007.03.069
  34. Qian, W. J.; Monroe, M. E.; Liu, T.; Jacobs, J. M. Mol. Cell Proteomics 2005, 4, 700. https://doi.org/10.1074/mcp.M500045-MCP200
  35. Yu, L. R.; Conrads, T. P.; Uo, T.; Issaq, H. J.; Morrison, R. S.; Veenstra, T. D. J. Proteome Res. 2004, 3, 469. https://doi.org/10.1021/pr034090t
  36. Jun, A.; Chanchal, K.; Yanling, Z.; Matthias, M. Mol. Cell Proteomics 2007, 6, 1257. https://doi.org/10.1074/mcp.M600476-MCP200
  37. Jorge, I.; Navarro, R. M.; Lenz, C.; Ariza, D.; Porras, C. Proteomics 2005, 5, 222. https://doi.org/10.1002/pmic.200400893
  38. Ramirez-Boo, M.; Garrido, J. J.; Ogueta, S.; Calvete, J. J.; Gomez-Diaz, C.; Moreno, A. Proteomics 2006, 6, 215. https://doi.org/10.1002/pmic.200500386
  39. Hynes, R. O. Cell 1992, 69, 11. https://doi.org/10.1016/0092-8674(92)90115-S
  40. Baldin, V. Prog. Cell Cycle Res. 2000, 4, 49.
  41. Laronga, C.; Yang, H. Y.; Neal, C.; Lee, M. H. J. Biol. Chem. 2000, 274, 23106.
  42. van Hemert, M. J.; Steensma, H. Y.; van Heusden, G. P. Bioessays 2001, 23, 936. https://doi.org/10.1002/bies.1134
  43. Zhang, L.; Chen, J.; Fu, H. Proc. Nat'l. Acad. Sci. U S A 1999, 96, 8511. https://doi.org/10.1073/pnas.96.15.8511
  44. Masters, S. C.; Yang, H.; Datta, S. R.; Greenberg, M. E.; Fu. H. Mol. Pharmacol. 2001, 60, 1325. https://doi.org/10.1124/mol.60.6.1325
  45. Martin, H.; Patel, Y.; Jones, D.; Howell, S.; Robinson, K.; Aitken, A. FEBS Lett. 1993, 331, 296. https://doi.org/10.1016/0014-5793(93)80356-Y
  46. Berg, D.; Holzmann, C.; Riess, O. Nat. Rev. Neurosci. 2003, 4, 752. https://doi.org/10.1038/nrn1197
  47. Tak, H.; Jang, E.; Kim, S. B.; Park, J.; Suk, J.; Yoon, Y. S. Cell Signal 2007, 19, 2379. https://doi.org/10.1016/j.cellsig.2007.07.016
  48. Robinson, R. C.; Turbedsky, K.; Kaiser, D. A.; Marchand, J. B.; Higgs, H. N.; Choe, S. Science 2001, 294, 1679. https://doi.org/10.1126/science.1066333
  49. Lee, S. K.; Kim, Y.; Kim, S. S.; Lee, J. H.; Cho, K.; Lee, S. S. et al., Proteomics 2009, 9, 4389. https://doi.org/10.1002/pmic.200900165
  50. Sato-Yoshitake, R.; Shiomura, Y.; Miyasaka, H.; Hirokawa, N. Neuron 1989, 3, 229. https://doi.org/10.1016/0896-6273(89)90036-6
  51. Gordon-Weeks, P. R.; Fischer, I. Microsc. Res. Tech. 2000, 48, 63. https://doi.org/10.1002/(SICI)1097-0029(20000115)48:2<63::AID-JEMT2>3.0.CO;2-1
  52. Deng, W.; Obrocka, M.; Fischer, I.; Prockop, D. J. Biochem. Biophys. Res. Commun. 2001, 282, 148. https://doi.org/10.1006/bbrc.2001.4570
  53. Rajfur, Z.; Roy, P.; Otey, C.; Romer, L.; Jacobson, K. Nat. Cell Biol. 2002, 4, 286. https://doi.org/10.1038/ncb772
  54. Izaguirre, G.; Aguirre, L.; Hu, Y. P.; Lee, H. Y.; Schlaepfer, D. D.; Aneskievich, B. J. J. Biol. Chem. 2001, 276, 28676. https://doi.org/10.1074/jbc.M101678200
  55. von Wichert, G.; Haimovich, B.; Feng, G. S.; Sheetz, M. P. EMBO J. 2003, 22, 5023. https://doi.org/10.1093/emboj/cdg492
  56. Cho, K.; Yoo, J.; Kim, J. Y.; Oh, H. B.; Yoo, J. S. Bull. Korean Chem. Soc. 2012, 33, 3298. https://doi.org/10.5012/bkcs.2012.33.10.3298
  57. Tran, T. H.; Hwang, I. J.; Park, J. M.; Kim, J. B.; Lee, H. K. Mass Spectrom. Lett. 2012, 3, 39. https://doi.org/10.5478/MSL.2012.3.2.29

Cited by

  1. Noninvasive Biomarker Candidates for Cadmium-Induced Nephrotoxicity by 2DE/MALDI-TOF-MS and SILAC/LC-MS Proteomic Analyses vol.148, pp.1, 2015, https://doi.org/10.1093/toxsci/kfv172
  2. Cellular events during scar-free skin regeneration in the spiny mouse,Acomys vol.24, pp.1, 2016, https://doi.org/10.1111/wrr.12385