• 제목/요약/키워드: LTLT milk

검색결과 30건 처리시간 0.021초

보존온도를 달리한 상업적 우유제품의 묘사적 관능분석 및 PCA 분석 (Quantitative Descriptive Analysis and Principal Component Analysis for Sensory Attributes of Commercial Milk Preserved at Different Temperature)

  • 정서진;노봉수;주종철;이민향;박승용
    • Journal of Dairy Science and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.25-35
    • /
    • 2011
  • 우유 열처리 유형별로 저온살균유(LTLTT), 고온살균유(HTST), UHT 살균유 및 UHT-ESL 우유 등 총 124팩의 우유제품을 $7^{\circ}C$$10^{\circ}C$의 온도에서 유통기한 경과 전과 후까지 훈련된 8명의 패널요원을 동원하여 묘사적 관능분석법에 의하여 관능적 특성을 평가하였다. 그 결과, 묘사적 용어로서 향/냄새 특성 3개(비린향, 우유향, 발효유향), 기본 맛 특성 3개(단맛, 짠맛, 신맛), 향미 특성 4개(우유향, 고소한 향, 치즈향, 종이향), 뒷맛 특성 1개(산패취), 입안 감촉특성 1개(점도) 등 총 12개의 관능적 용어가 도출되었다. 우유의 보존온도를 각각 $7^{\circ}C$$10^{\circ}C$로 달리하여 저장한 후 관능특성을 통계적으로 비교한 결과, LTLT 우유는 $7^{\circ}C$에서 발효향, 짠맛, 신맛, 치즈향, 산패취 등 5개 특성 값이 $10^{\circ}C$ 보다 낮게 나타났으며, 그 차이는 높은 유의성(P<0.01)이 있었다. HTST 우유는 비린향과 우유향은 $7^{\circ}C$에서 더 높은 값을 보여주었고, 발효향과 짠맛은 더 낮은 값을 보여 서로 상반되는 결과였지만, 비린향, 우유향 및 짠맛의 차이는 높은 유의성(P<0.01), 발효유향은 P<0.05 수준에서 유의성을 보였다. UHT 우유는 단맛, 우유향, 치즈향 등의 관능특질이 $10^{\circ}C$ 보존온도보다 높게 나타났으며(P<0.01), 그 수준은 타 유형의 열처리 우유보다 높은 값이었다. UHT-ESL 우유는 $7^{\circ}C$에서 신맛, 치즈향, 종이향, 산패취 등(P<0.01)과 우유향(P<0.05)이 저온으로 열처리 한 우유나 UHT 우유와도 같은 수준으로 나타났고, $10^{\circ}C$에서는 이와 같은 관능특질들이 매우 미약한 상태를 유지하였다. 이와 같은 결과로 판단해 볼 때 열처리 온도가 상대적으로 낮은 살균유인 LTLT 우유나 HTST 우유는 물론 UHT 처리 우유제품도 유통기간 중 미생물학적 안전성외에 관능적 특성들이 더욱 신선하게 유지될 수 있도록 현행 유통기준 온도를 $7^{\circ}C$ 이하로 낮추어야 할 필요성이 대두되었다.

  • PDF

Microbial and Nutritional Quality of Extended Shelf Life (ESL) Milk

  • Imm, Jee-Young;Kim, Jong-Gun;Kim, Ji-Uk;Park, Soon-Ok;Oh, Se-Jong;Kim, Young-Jin;Chun, Ho-Nam;Jung, Hoo-Kil;You, Seung-Kwon;Whang, Kwang-Yeon;Kim, Sae-Hun
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.752-757
    • /
    • 2005
  • Changes in milk quality during storage of extended shelf life milk (ESL milk) and non-ESL milk were evaluated. No significant differences were observed between ESL and typical ultra high temperature-treated (UHT) milk in physicochemical properties including non-casein nitrogen (NCN) content, whey protein nitrogen index (WPNI), and L-ascorbic acid content. Low temperature and long time-treated milk (LTLT milk) had significantly higher NCN content and WPNI than those of UHT milk. In terms of microbial quality, yeast, molds, coliforms, and other bacteria were not detected in ESL milk during entire storage (21 days after expiration date) period at 4 and $25^{\circ}C$, while LTLT milk was more susceptible to microbial infection. Rats fed ESL milk resulted in significantly higher body weight, average daily gain, and feed efficiency than those given UHT milk. These results suggest ESL milk maintains better microbial quality than typical UHT milk, particularly during storage under extended refrigeration and at high temperature.

우유의 열처리가 우유품질과 영양가에 미치는 영향: IV. 우유의 열처리가 우유단백질의 이화학적 성질과 영양에 미치는 영향 (Effects of Heat Treatment on the Nutritional Quality of Milk. IV. Effects of Heat Treatment on the Physical and Nutritional Properties of Milk Protein)

  • 정종욱;정지윤;민태선;오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제35권4호
    • /
    • pp.270-285
    • /
    • 2017
  • Among milk proteins, caseins are not subjected to chemical changes during heat treatment of milk; however, whey proteins are partially denatured following heat treatment. The degree of whey protein denaturation by heat treatment is decreased in the order of high temperature short time (HTST) > low temperature long time (LTLT) > direct-ultra-high temperature (UHT) > indirect-UHT. As a result of heat treatment, several changes, including variations in milk nitrogen, interactions between beta-lactoglobulin and k-casein, variations in calcium sulfate and casein micelle size, and delay of milk coagulation by chymosin action, were observed. Lysine, an important essential amino acid found in milk, was partially inactivated during heat treatment. Therefore, the available amount of lysine decreased slightly (1~4% decrease) after heat treatment, However, the influence of heat treatment on the nutritional value of milk was negligible. Nutritional value and nitrogen balance did not differ significantly between UHT and LTLT in milk. In conclusion, our results showed that heat treatment of milk did not alter protein quality. Whey proteins denatured to a limited extent during the heat treatment process, and the nutritional value and protein quality were unaffected by heat treatment.

면역단백질 G(IgG)의 열처리에 대한 안정성 (Stability of Immunoglobulin G(IgG) by Heat Treatment)

  • 박종대;손동화;정관섭
    • 한국식품저장유통학회지
    • /
    • 제10권2호
    • /
    • pp.236-240
    • /
    • 2003
  • 초유성분을 이용한 유제품의 개발시 기초자료로 활용하기 위하여 IgG 강화우유의 살균온도에 따른 IgG 활성 잔존율과 초유관련 분말제품의 용해온도에 따른 IgG 활성 잔존율을 측정하였다. 그 결과, 원유, IgG 50 mg, 250 mg 강화한 우유는 살균처리 온도가 높을수록 활성 잔존율이 급격히 감소하였으며, LTLT 처리시 원유, 50 mg, 250 mg 강화우유의 활성 잔존율은 각각 79%, 30%, 21.6%였다. 그러나 9$0^{\circ}C$/15초 이상의 살균 처리시에는 IgG 활성이 거의 파괴되었다. 분말제품의 3$0^{\circ}C$, 4$0^{\circ}C$, 5$0^{\circ}C$, 6$0^{\circ}C$ 용해온도에 따른 IgG 활성 잔존율은 큰 차이를 나타내지 않았다.

Comparison of Total RNA Isolation Methods for Analysis of Immune-Related microRNAs in Market Milks

  • Oh, Sangnam;Park, Mi Ri;Son, Seok Jun;Kim, Younghoon
    • 한국축산식품학회지
    • /
    • 제35권4호
    • /
    • pp.459-465
    • /
    • 2015
  • Bovine milk provides essential nutrients, including immunologically important molecules, as the primary source of nutrition to newborns. Recent studies showed that RNAs from bovine milk contain immune-related microRNAs (miRNA) that regulate various immune systems. To evaluate the biological and immunological activity of miRNAs from milk products, isolation methods need to be established. Six methods for extracting total RNAs from bovine colostrums were adopted to evaluate the isolating efficiency and expression of miRNAs. Total RNA from milk was presented in formulation of small RNAs, rather than ribosomal RNAs. Column-combined phenol isolating methods showed high recovery of total RNAs, especially the commercial columns for biofluid samples, which demonstrated outstanding efficiency for recovering miRNAs. We also evaluated the quantity of five immune-related miRNAs (miR-93, miR-106a, miR-155, miR-181a, miR-451) in milk processed by temperature treatments including low temperature for long time (LTLT, 63℃ for 30 min)-, high temperature for short time (HTST, 75℃ for 15 s)-, and ultra heat treatment (UHT, 120-130℃ for 0.5-4 s). All targeted miRNAs had significantly reduced levels in processed milks compared to colostrum and raw mature milk. Interestingly, the amount of immune-related miRNAs from HTST milk was more resistant than those of LTLT and UHT milks. Our present study examined defined methods of RNA isolation and quantification of immune-specific miRNAs from small volumes of milk for use in further analysis.

16S rRNA 유전자의 Semi-nested Primer를 이용한 Broad-range PCR에 의한 그람음성세균의 검출과 시유에서의 응용 (Detection of Gram-negative Bacteria in Broad-range PCR Amplifying 16S rRNA Gene with Semi-nested Primers and Its Application in Market Milk)

  • 최석호;최정준;이승배
    • Journal of Animal Science and Technology
    • /
    • 제47권3호
    • /
    • pp.465-474
    • /
    • 2005
  • A two-step broad-range PCR method detecting gram-negative bacteria at the level as low as 2 CFU was developed by using primers of GNFI and GNRI and then semi-nested primer of GNF2 and GNRI. The nucleotide sequences of the primers were determined based on l6S rRNA gene. The DNA fragments of 1173 bp and 169 bp were amplified in one-step PCRs with primer sets of GNFI-GNRI and GNF2-GNRl, respectively, using template DNA from seven strains of gram-negative bacteria including Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas spp., and Acinetobacter baumaii but not from Achromobacter lyticus, Alca/igens faecalis, and five strains of gram-positive bacteria. DNA fragments of 180 bp were amplified from LTLT-pasteurized milk and UHf-pasteurized milk in the two-step PCR. The DNA fragments were amplified from LTLT-pasteurized milk which was added with Pseudomonas j/uorescens and subsequently heated at 65 $^{\circ}C$, 80 $^{\circ}C$, and 100 $^{\circ}C$ for 30 min but they were not amplified from the milk autoclaved at 121$^{\circ}C$ for 15 min. It was suggested in PCR that Pseudomonas fluorescens heated at 65 $^{\circ}C$ for 30 min in milk was more sensitive to DNase treatment than viable bacteria.

우유의 열처리가 우유품질과 영양가에 미치는 영향: III. 우유 열처리에 의한 병원균 사멸효과 (Effects of Heat Treatment on the Nutritional Quality of Milk III. Effect of Heat Treatment on Killing Pathogens in Milk)

  • 문용일;정지윤;오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제35권2호
    • /
    • pp.121-133
    • /
    • 2017
  • A small amount of milk is sold as 'untreated' or raw in the US; the two most commonly used heat-treatments for milk sold in retail markets are pasteurization (LTLT, low-temperature long time; HTST, high-temperature short time) and sterilization (UHT, ultra-high temperature). These treatments extend the shelf life of milk. The main purpose of heat treatment is to reduce pathogenic and perishable microbial populations, inactivate enzymes, and minimize chemical reactions and physical changes. Milk UHT processing combined with aseptic packaging has been introduced to produce shelf-stable products with less chemical damage than sterile milk in containers. Two basic principles of UHT treatment distinguish this method from in-container sterilization. First, for the same germicidal effect, HTST treatments (as in UHT) use less chemicals than cold-long treatment (as in in-container sterilization). This is because Q10, the relative change in the reaction rate with a temperature change of $10^{\circ}C$, is lower than the chemical change during bacterial killing. Based on Q10 values of 3 and 10, the chemical change at $145^{\circ}C$ for the same germicidal effect is only 2.7% at $115^{\circ}C$. The second principle is that the need to inactivate thermophilic bacterial spores (Bacillus cereus and Clostridium perfringens, etc.) determines the minimum time and temperature, while determining the maximum time and temperature at which undesirable chemical changes such as undesirable flavors, color changes, and vitamin breakdown should be minimized.

ESL 생산공정에 따른 시유 유래 미생물의 분포 비교 연구 (Comparative Characterization of the Bacteria Isolated from Market Milk Treated with ESL and Conventional System)

  • 김응률;정병문;유병희;정후길;강국희;전호남
    • 한국축산식품학회지
    • /
    • 제23권4호
    • /
    • pp.327-332
    • /
    • 2003
  • 본 연구는 ESL 우유와 시중 4개 회사의 일반 시유 제품의 보존 검사에서 분리되어 1차적으로 선별된 364 균주에 대해서 균주 분류를 통하여 우유의 저장온도와 기간 중의 우유내 우세균을 확인하고 ESL 우유와 기타 일반 시유의 미생물 균종별 분포를 비교하였으며, 그 결과는 다음과 같다. 먼저 364 균주의 분리원에 따른 분류에서는 ESL 우유가 가장 낮은 검출 균주수를 나타냈다. 전체 분리된 미생물 균주의 분포를 보면, Bacillus 계통과 Staphylococcus 계통이 주로 많이 검출되었으며, Lactobacillus 계통을 제외하고는 매우 다양한 분포를 가지는 것으로 나타났다. 우유 가공처리법에 따른 분리균종을 비교해 보면, LTLT 살균유의 경우에는 내열성이 강한 Enterococcus 계통의 균종이 특이적으로 많이 검출되었으며, UHT 살균유 중에서 ESL 우유에 비해서 기타 일반 시유에서는 Pseudomonas 계통의 저온성 미생물 균종이 많이 검출되었다. 보존온도별 균종 분포를 보면, Bacillus 계통은 보존온도가 높을수록 검출빈도가 높았으며, Pseudomonas와 같은 저온성 계통은 $10^{\circ}C$에서 가장 높은 빈도로 검출되었다. 기초동정 결과와 동정기를 이용한 동정 결과를 비교한 결과, 기초 동정법에 의한 균종의 분류 정확도가 매우 높은 것으로 확인되었다. 결론적으로 ESL우유와 일반우유의 미생물 균종 분포를 비교해 볼 때, 살균후 포장과정에서 2차적으로 오염될 확률이 높은 Pseudomonas 계통에서 커다란 차이를 보였으며, 이러한 Pseudomonas 계통의 미생물은 냉장 유통에서도 품질에 영향을 미치는 것으로 확인되었다. 따라서 ESL 우유가 유통 중 제품의 품질 향상과 수명 연장이 되는 것은 미생물 오염도가 낮기 때문인 것으로 확인되었다.

우유의 열처리가 우유품질과 영양가에 미치는 영향: II. 열처리에 의한 우유의 미생물 사멸효과 (Effects of Heat Treatment on the Nutritional Quality of Milk: II. Destruction of Microorganisms in Milk by Heat Treatment)

  • 김광현;박대은;오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제35권1호
    • /
    • pp.55-72
    • /
    • 2017
  • The second article of 'Effects of heat treatment on the nutritional quality of milk,' titled 'Destruction of microorganisms in milk by heat treatment' and authored by Dr. Seong Kwan Cha, who worked at the Korea Food Research Institute, covers the heat-stable microorganisms that exist in milk after pasteurization. The article focusses on the microbiological quality of raw milk and market milk following heat treatment, and is divided into four sub-topics: microbiological quality of raw milk, survey and measurement of microorganisms killed in raw milk, effect on psychrophilic and mesophilic microorganisms, and effect of heat treatment methods on thermoduric microorganisms. Bacillus spp. and Clostridium spp. are sporeforming gram-positive organisms commonly found in soil, vegetables, grains, and raw and pasteurized milk that can survive most food processing methods. Since spores cannot be inactivated by LTLT (low temperature long time) or HTST (high temperature short time) milk pasteurization methods, they are often responsible for food poisoning. However, UHT (ultra high temperature) processing completely kills the spores in raw milk by heating it to temperatures above $130^{\circ}C$ for a few seconds, and thus, the UHT method is popularly used for milk processing worldwide.

우유의 열처리가 우유품질과 영양가에 미치는 영향: V. 열처리가 우유효소에 미치는 영향 (Effects of Heat Treatment on the Nutritional Quality of Milk: V. The Effect of Heat Treatment on Milk Enzymes)

  • 신한섭;오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제36권1호
    • /
    • pp.49-71
    • /
    • 2018
  • Heat treatment is the most popular processing technique in the dairy industry. Its main purpose is to destroy the pathogenic and spoilage bacteria in order to ensure that the milk is safe throughout its shelf life. The protease and lipase that are present in raw milk might reduce the quality of milk. Plasmin and protease, which are produced by psychrotrophic bacteria, are recognized as the main causes of the deterioration in milk flavor and taste during storage. The enzymes in raw milk can be inactivated by heat treatment. However, the temperature of inactivation varies according to the type of enzyme. For example, some Pseudomonas spp. produce heat-resistant proteolytic and lipolytic enzymes that may not be fully inactivated by the low temperature and long time (LTLT) treatment. These types of enzymes are inhibited only by the high temperature and short time (HTST) or ultra-high temperature (UHT) treatment of milk.