• Title/Summary/Keyword: LTE B13

Search Result 28, Processing Time 0.021 seconds

Design of Dual LTE-band MIMO Antenna (이중 LTE 대역의 MIMO 안테나 설계)

  • Choi, Won-Sang;Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • In the paper, MIMO antenna for LTE 13 band, LTE 7 band wireless communication service is proposed. The proposed antenna is designed where on the top of FR-4(${\epsilon}_r=4.4$, thickness=-.8mm). In proposed structure, two Planar Inverted F Antennas (PIFAs) using meander and folded structure are symmetrically designed for the miniaturization. The isolation between two antennas was also improved by using two slits on the ground plane. The isolation values of the fabricated antenna exhibits -18 dB, -13dB at LTE 13 and LTE 7 band, respectively. The average gain and efficiency are - 4.1 dBi, 41% on LTE 13 band, -1 dBi, 81% on LTE 7 band, respectively. Thus the proposed antenna can be applied to the LTE system.

A Study on Isolation Improvement of LTE-PIFA Used Stub Structure on Ground Plane (접지면 위의 스터브를 이용한 LTE-PIFA의 격리도 개선 연구)

  • Park, Chan-Jin;Min, Kyoeng-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.374-383
    • /
    • 2013
  • This paper presents a design for improvement of isolation characteristics by the inserted stub structure on ground plane of a handy terminal which is composed of a main antenna and a sub antenna covered LTE bandwidth. In order to compensate for a resonance length of proposed antenna and to realize a high isolation characteristic, a pair of stub was inserted and located on ground plane that currents from two antennas were converged. A simulated isolation characteristic of antenna without stub at the LTE class 13 band was about -5 dB, but its characteristics of proposed antenna with two stubs at uplink(777~787 MHz) and downlink(746~756 MHz) of the LTE class 13 band were about -12 dB and -15 dB, respectively. An average gain of a fabricated antenna with two stubs was observed about -2 dBi above and it showed good results with comparison of business condition that the average gain of commercial handy terminal has to appear -4 dBi above. The measured S-parameter characteristics and radiation patterns showed a reasonable agreement with the simulation results.

A Study on the Improvement of MIMO Antenna Isolation for Mobile Applications (휴대 단말기용 MIMO 안테나의 격리도 향상에 관한 연구)

  • Yoon, In-Seop;Yan, Xiao-Jia;Kim, Sang-Uk;Jo, Yun-Hyun;Park, Hyo-Dal
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.987-992
    • /
    • 2015
  • In this paper, neutralization line structure have been employed to improve the isolation between the MIMO antenna system. The proposed MIMO antenna size is $116mm{\times}64mm{\times}5mm$ and designed on FR-4(${\varepsilon}r=4.4$) ground substrate. Neutralization line was applied to enhance isolation between the each antenna elements. The fabricated antenna satisfied a VSWR below 3 in LTE band B13 and the isolation between the MIMO antenna system is presented below -15dB. On the H-plane, antenna shows an omnidirectional pattern. In LTE band B13, the antenna presents a gain of a -2.6dBi ~-1.18dBi and radiation efficiency of 33.49% ~ 46.45%. Comparing measurement result with the outcome of simulation, the proposed MIMO antenna is expected to be applied for mobile application.

A 4-port MIMO Antenna for LTE Femtocell using Cross Decoupler (Cross Decoupler를 이용한 LTE 펨토셀용 4-port MIMO 안테나)

  • Ahn, Sang-Kwon;Jeong, Gye-Taek;Lee, Hwa-Choon;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.50-56
    • /
    • 2014
  • This paper describes the design, fabrication, and measurement of a 4-port femtocell MIMO antenna for LTE 700MHz(Band12, 13, 14, 17, 28, 44) applications. Based on microstrip patch antenna, an impedance matching is achieved by short pin. In order to obtain sufficient bandwidth and isolation between antenna elements in a limited dimension, a cross decoupler is used. With a Voltage Standing Wave Ratio (VSWR)${\leq}2$, the measured result of the fabricated antenna provides 105MHz(0.698~0.803MHZ) bandwidth and shows the gain with 1.97dBi and isolation above 13dB. As one of the key parameters for MIMO performance evaluation, correlation coefficient of MIMO is achieved within 0.2.

Design of a MIMO Antenna Using a RF MEMS Element (RF MEMS 소자를 이용한 MIMO 안테나 설계)

  • Lee, Won-Woo;Rhee, Byung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1113-1119
    • /
    • 2013
  • In this letter, a new approach is proposed for the design of a multi antenna for MIMO wireless devices. The proposed antenna covers various LTE(Long Term Evolution) service bands: band 17(704~746 MHz), band 13(746~787 MHz), band 5(824~894 MHz), and band 8(880~960 MHz). The proposed main antenna consists of a conventional monopole antenna with an inverted L-shaped slit for wideband operation. The proposed the LTE sub antenna is based on a switch loaded loop antenna structure, with a resonance frequency that can be controlled by capacitance of a logic circuit. The tuning technique for the LTE Rx antenna uses a RF MEMS(Micro-Electro mechanical system) to match the impedances to realize the bands of interest. Because the two proposed antennas are polarized orthogonally to each other, the ECC(Envelope Correlation Coefficient) characteristic between two antennas was measured to be very low (below 0.06) with an isolation characteristic below -20 dB between the two antennas in the operating overall LTE bands. The proposed antenna is particularly attractive for mobile devices that integrate LTE multiple systems.

A 0.13-㎛ Zero-IF CMOS RF Receiver for LTE-Advanced Systems

  • Seo, Youngho;Lai, Thanhson;Kim, Changwan
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • This paper presents a zero-IF CMOS RF receiver, which supports three channel bandwidths of 5/10/40MHz for LTE-Advanced systems. The receiver operates at IMT-band of 2,500 to 2,690MHz. The simulated noise figure of the overall receiver is 1.6 dB at 7MHz (7.5 dB at 7.5 kHz). The receiver is composed of two parts: an RF front-end and a baseband circuit. In the RF front-end, a RF input signal is amplified by a low noise amplifier and $G_m$ with configurable gain steps (41/35/29/23 dB) with optimized noise and linearity performances for a wide dynamic range. The proposed baseband circuit provides a -1 dB cutoff frequency of up to 40MHz using a proposed wideband OP-amp, which has a phase margin of $77^{\circ}$ and an unit-gain bandwidth of 2.04 GHz. The proposed zero-IF CMOS RF receiver has been implemented in $0.13-{\mu}m$ CMOS technology and consumes 116 (for high gain mode)/106 (for low gain mode) mA from a 1.2 V supply voltage. The measurement of a fabricated chip for a 10-MHz 3G LTE input signal with 16-QAM shows more than 8.3 dB of minimum signal-to-noise ratio, while receiving the input channel power from -88 to -12 dBm.

Design of a multi-band antenna for a mobile communication terminal with reconfiguration characteristic (재구성 특성을 갖는 다중대역 이동통신 단말기용 안테나의 설계 및 제작)

  • Im, Dae-Soo;Kim, Ki-Rae;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.772-779
    • /
    • 2015
  • In this paper,a reconfigurable multi-band mobile antenna with switching line for LTE band 13, GSM, K-PCS, WCDMA band. The proposed antenna is planar strip line design and composed of stub shorted to the ground plane and two switching line for proposed band operation. To obtain the optimized parameters, we used the simulator, Using the obtained parameters is fabricated. The numerical and experiment results demonstrated that the proposed antenna satisfied the -6 dB impedance bandwidth requirement while simultaneously covering when the state of sw1 and sw2 on for LTE band 13, the state of sw1 off and sw2 on for GSM, K-PCS, the state of sw1 off and sw2 off for WCDMA. Respectively and characteristics of gain and radiation patterns are determined for a reconfigurable multi-band mobile terminal.

A Study on the Enhancement of Isolation of the MIMO Antenna for LTE/DCS1800/USPCS1900 Handset (LTE/DCS1800/USPCS1900 단말기용 MIMO 안테나의 격리도 개선에 관한 연구)

  • Cho, Dong-Ki;Son, Ho-Cheol;Lee, Jin-Woo;Lee, Sang-Woon;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.80-85
    • /
    • 2010
  • In this paper, a MIMO antenna is proposed for LTE/DCSl800/USPCSl900 handset applications. The proposed antenna is based on the IFA and its wide bandwidth is obtained by using a stagger tuning technique. To improve the isolation, a suspended line is connected to the shorting points in two antennas, and capacitors and inductors are added to the connected suspended line. Two identical antennas of which dimension is 2.8cc($40{\times}10{\times}7mm$) are mounted on the two end lines of the system ground plane($40{\times}60mm$). Analysis of the antenna performance and optimization is performed using CST Microwave Studio. The bandwidths are satisfied for LTE band class 13(746-787MHz), class 14(758-798MHz) and DCSl800/USPCSl900 band (1710-1990MHz). The isolations between two antennas are about -12dB for LTE band and -10dB for DCSl800/USPCSl900 band. And the radiation efficiency of each antenna is about for LTE band 33% and 45% for DCSl800/USPCSl900 band respectively.

High-Efficiency GaN-HEMT Doherty Power Amplifier with Compact Harmonic Control Networks (간단한 구조의 고조파 정합 네트워크를 갖는 GaN-HEMT 고효율 Doherty 전력증폭기)

  • Kim, Yoonjae;Kim, Minseok;Kang, Hyunuk;Cho, Sooho;Bae, Jongseok;Lee, Hwiseob;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.783-789
    • /
    • 2015
  • This paper presents a Doherty power amplifier(DPA) operating in the 2.6 GHz band for long term evolution(LTE) systems. In order to achieve high efficiency, second and third harmonic impedances are controlled using a compact output matching network. The DPA was implemented using a gallium nitride high electron mobility transistor(GaN-HEMT) that has many advantages, such as high power density and high efficiency. The implemented DPA was measured using an LTE downlink signal with a 10 MHz bandwidth and 6.5 dB PAPR. The implemented DPA exhibited a gain of 13.1 dB, a power-added efficiency(PAE) of 57.6 %, and an ACLR of -25.7 dBc at an average output power of 33.4 dBm.

Design of Beamforming Butler Switch for LTE MIMO(4x4) System (LTE MIMO(4x4) 시스템용 빔성형 버틀러 스위치 설계)

  • Lee, dong-hak;Seo, soo-duk;Cho, hak-rae;Yang, doo-yeong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.13-14
    • /
    • 2016
  • LTE 대역인 2.5-2.68GHz에서 동작하는 버틀러 스위치를 설계하기 위해 버틀러 매트릭스의 구성요소인 3dB 하이브리드 커플러와 크로스오버를 다단 브랜치 선로의 구조로 구성하여 광대역 특성을 갖는 평면 구조의 버틀러 스위치를 설계하였다. 설계된 버틀러 스위치는 동작대역에서 23.9dB ~ 34.18dB의 좋은 반사손실 특성과 비교적 작은 $7.124^{\circ}$의 위상오차를 보였다.

  • PDF