• 제목/요약/키워드: LSTM-autoencoder

검색결과 26건 처리시간 0.026초

시간대를 고려한 SHAP 기반의 신용카드 이상 거래 탐지 (Credit Card Fraud Detection Based on SHAP Considering Time Sequences)

  • 양소연 ;임유진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.370-372
    • /
    • 2023
  • 신용카드 부정 사용은 고객 및 기업의 신용과 재산에 막대한 손실을 미치고 있다. 이에 따라 금융사들은 이상금융거래탐지시스템을 도입하였으나 이상 거래 발생 여부를 지속적으로 모니터링하고 있기 때문에 시스템 유지에 많은 비용이 따른다. 따라서 본 논문에서는 컴퓨팅 리소스를 절약함과 동시에 성능 개선 효과를 보인 신용카드 이상 거래 탐지 알고리즘을 제안한다. CTGAN 을 활용하여 정상 거래와 이상 거래의 비율을 일부 완화하였고 XAI 기법인 SHAP 를 활용하여 유의미한 속성값을 선택하였다. 이것을 기반으로 LSTM Autoencoder를 사용하여 이상데이터를 탐지하였다. 그 결과 전통적인 비지도 학습 기법에 비해 제안 알고리즘이 우수한 성능을 보였음을 확인하였다.

경량 IoT 를 위한 오토 인코더 기반의 데이터 압축 기법 (Autoencoder-based Data Compression Technique for Lightweight IoT)

  • 김연진;박나은;이일구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.171-174
    • /
    • 2024
  • IoT 가 전 산업에 널리 활용되면서 생성되는 데이터 양이 급증하고 있다. 그러나 경량, 저가, 저전력 IoT 는 대용량 데이터를 처리, 저장, 전송하기 어렵다. 그러나 이러한 문제를 해결하기 위한 종래의 방법들은 복잡도와 성능의 트레이드오프 문제가 있다. 본 논문은 IoT 기기의 효율적 리소스 사용을 위한 오토 인코더 데이터 압축 기법을 제안한다. 실험 결과에 따르면 제안한 기법은 종래 기술에 비해 평균 60.61% 축소된 데이터 크기를 보였다. 또한, 제안된 기법으로 압축된 데이터를 사용하여 모델 학습을 진행한 결과에 따르면 RNN 과 LSTM 모델에 제안한 방법을 적용했을 때 모두 97% 이상의 정확도를 보였다.

스마트팜 개별 전기기기의 비간섭적 부하 식별 데이터 처리 및 분석 (Data Processing and Analysis of Non-Intrusive Electrical Appliances Load Monitoring in Smart Farm)

  • 김홍수;김호찬;강민제;좌정우
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.632-637
    • /
    • 2020
  • 비간섭적 개별 전기 기기 부하 식별(NILM)은 단일 미터기에서 측정한 총 소비 전력을 사용하여 가정이나 회사에서 개별 전기 기기의 소비 전력과 사용 시간을 효율적으로 모니터링할 수 있는 방법이다. 본 논문에서는 스마트팜의 소비 전력 데이터 취득 시스템에서 LTE 모뎀을 통해 서버로 수집된 총 소비 전력량, 개별 전기 기기의 전력량을 HDF5 형태로 변환하고 NILM 분석을 수행하였다. NILM 분석은 오픈소스를 사용하여 잡음제거 오토인코더(Denoising Autoencoder), 장단기 메모리(Long Short-Term Memory), 게이트 순환 유닛(Gated Recurrent Unit), 시퀀스-투-포인트(sequence-to-point) 학습 방법을 사용하였다.

마우스 동작 기록 기반 비정상 게임 이용자 감지를 위한 단일 클래스 분류 기법 (One-Class Classification based on Recorded Mouse Activity for Detecting Abnormal Game Users)

  • 송민준;김인기;김범준;전영훈;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.39-42
    • /
    • 2023
  • 최근 온라인 게임 산업이 급속도로 확장됨과 더불어 Gamebot과 같은 비정상적인 프로그램으로 인한 게임 서비스 피해사례가 급격하게 증가하고 있다. 특히, 대표적인 게임 장르 중 하나인 FPS(First-Person Shooter)에서 Aimbot의 사용은 정상적인 이용자들에게 재미 요소를 잃어버리게 하고 상대적 박탈감을 일으켜 게임의 수명을 줄이는 원인이 된다. 비정상 게임 이용자의 근절을 위해서 메모리 변조 및 불법 변조 프로그램 접근 차단 기법과 불법 프로그램 사용의 패턴 모니터링과 같은 기법들이 제안되었지만, 우회 프로그램 및 새로운 패턴을 이용한 비정상적인 프로그램의 개발에는 취약하다는 단점이 있다. 따라서, 본 논문에서는 정상적인 게임 이용자의 패턴만 학습함으로써 비정상 이용자 검출을 가능하게 하는 딥러닝 기반 단일 클래스 분류 기법을 제안하며, 가장 빈번하게 발생하는 치트(Cheat) 유형인 FPS 게임 내 Aimbot 사용 감지에 초점을 두었다. 제안된 비정상 게임 이용자 감지 시스템은 정상적인 사용자의 마우스 좌표를 데카르트 좌표계(Cartesian coordinates)와 극좌표계(Polar coordinates)의 형태로 패턴을 추출하는 과정과 정상적인 마우스 동작 기록으로 부터 학습된 LSTM 기반 Autoencoder의 복원 에러에 따른 검출 과정으로 구성된다. 실험에서 제안된 모델은 FPS 게임 내 마우스 동작을 기록한 공개 데이터셋인 CSGO 게임 데이터셋으로 부터 학습되었으며, 학습된 모델의 테스트 결과는 데카르트 좌표계로부터 훈련된 제안 모델이 비정상 게임 이용자를 분류하는데 적합함을 입증하였다.

  • PDF

Anomaly detection of smart metering system for power management with battery storage system/electric vehicle

  • Sangkeum Lee;Sarvar Hussain Nengroo;Hojun Jin;Yoonmee Doh;Chungho Lee;Taewook Heo;Dongsoo Har
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.650-665
    • /
    • 2023
  • A novel smart metering technique capable of anomaly detection was proposed for real-time home power management system. Smart meter data generated in real-time were obtained from 900 households of single apartments. To detect outliers and missing values in smart meter data, a deep learning model, the autoencoder, consisting of a graph convolutional network and bidirectional long short-term memory network, was applied to the smart metering technique. Power management based on the smart metering technique was executed by multi-objective optimization in the presence of a battery storage system and an electric vehicle. The results of the power management employing the proposed smart metering technique indicate a reduction in electricity cost and amount of power supplied by the grid compared to the results of power management without anomaly detection.

대규모 외생 변수 및 Deep Neural Network 기반 금융 시장 예측 및 성능 향상 (Financial Market Prediction and Improving the Performance Based on Large-scale Exogenous Variables and Deep Neural Networks)

  • 천성길;이주홍;최범기;송재원
    • 스마트미디어저널
    • /
    • 제9권4호
    • /
    • pp.26-35
    • /
    • 2020
  • 미래의 주가를 예측하기 위한 시도는 과거부터 꾸준히 연구되어왔다. 그러나 일반적인 시계열 데이터와 달리 금융 시계열 비정상성(non-stationarity)과 장기 의존성(long-term dependency), 비선형성(non-linearity) 등 예측을 하는 것에 있어서 여러 가지 방해 요인이 존재한다. 또한, 광범위한 데이터의 변수는 기존에 사람이 직접 선택하는 것에 한계가 있으며 모델이 변수를 자동으로 잘 추출할 수 있도록 하여야 한다. 본 논문에서는 비정상성 데이터를 정규화할 수 있는 슬라이딩 타임스텝 정규화(sliding time step normalization) 방법과 LSTM 형태의 오토인코더(AutoEncoder)를 사용하여 모든 변수로부터 압축된 변수로 미래 주가를 예측하는 방법, 기간을 나누어 전이 학습을 하는 이동 전이 학습(moving transfer learning)을 제안한다. 또한, 실험을 통하여 100개의 주요 금융 변수들만을 사용하는 것보다 뉴럴 네트워크를 통해서 가능한 많은 변수를 사용하였을 때 성능이 우수함을 보이며, 슬라이딩 타임스텝 정규화 방법을 사용하여 모든 구간에서 데이터의 비정상성에 대해 정규화를 수행함으로써 성능 향상에 효과적임을 보인다. 이동 전이 학습 방법은 스텝 별 테스트 구간에서 모델의 성능을 평가하고 전이학습을 함으로써 긴 테스트 구간에서 성능 향상에 효과적임을 보인다.