• 제목/요약/키워드: LSTM-RNN

검색결과 208건 처리시간 0.024초

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Prediction of pollution loads in agricultural reservoirs using LSTM algorithm: case study of reservoirs in Nonsan City

  • Heesung Lim;Hyunuk An;Gyeongsuk Choi;Jaenam Lee;Jongwon Do
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.193-202
    • /
    • 2022
  • The recurrent neural network (RNN) algorithm has been widely used in water-related research areas, such as water level predictions and water quality predictions, due to its excellent time series learning capabilities. However, studies on water quality predictions using RNN algorithms are limited because of the scarcity of water quality data. Therefore, most previous studies related to water quality predictions were based on monthly predictions. In this study, the quality of the water in a reservoir in Nonsan, Chungcheongnam-do Republic of Korea was predicted using the RNN-LSTM algorithm. The study was conducted after constructing data that could then be, linearly interpolated as daily data. In this study, we attempt to predict the water quality on the 7th, 15th, 30th, 45th and 60th days instead of making daily predictions of water quality factors. For daily predictions, linear interpolated daily water quality data and daily weather data (rainfall, average temperature, and average wind speed) were used. The results of predicting water quality concentrations (chemical oxygen demand [COD], dissolved oxygen [DO], suspended solid [SS], total nitrogen [T-N], total phosphorus [TP]) through the LSTM algorithm indicated that the predictive value was high on the 7th and 15th days. In the 30th day predictions, the COD and DO items showed R2 that exceeded 0.6 at all points, whereas the SS, T-N, and T-P items showed differences depending on the factor being assessed. In the 45th day predictions, it was found that the accuracy of all water quality predictions except for the DO item was sharply lowered.

Cyber Threat Intelligence Traffic Through Black Widow Optimisation by Applying RNN-BiLSTM Recognition Model

  • Kanti Singh Sangher;Archana Singh;Hari Mohan Pandey
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.99-109
    • /
    • 2023
  • The darknet is frequently referred to as the hub of illicit online activity. In order to keep track of real-time applications and activities taking place on Darknet, traffic on that network must be analysed. It is without a doubt important to recognise network traffic tied to an unused Internet address in order to spot and investigate malicious online activity. Any observed network traffic is the result of mis-configuration from faked source addresses and another methods that monitor the unused space address because there are no genuine devices or hosts in an unused address block. Digital systems can now detect and identify darknet activity on their own thanks to recent advances in artificial intelligence. In this paper, offer a generalised method for deep learning-based detection and classification of darknet traffic. Furthermore, analyse a cutting-edge complicated dataset that contains a lot of information about darknet traffic. Next, examine various feature selection strategies to choose a best attribute for detecting and classifying darknet traffic. For the purpose of identifying threats using network properties acquired from darknet traffic, devised a hybrid deep learning (DL) approach that combines Recurrent Neural Network (RNN) and Bidirectional LSTM (BiLSTM). This probing technique can tell malicious traffic from legitimate traffic. The results show that the suggested strategy works better than the existing ways by producing the highest level of accuracy for categorising darknet traffic using the Black widow optimization algorithm as a feature selection approach and RNN-BiLSTM as a recognition model.

스마트 팩토리 모니터링을 위한 빅 데이터의 LSTM 기반 이상 탐지 (LSTM-based Anomaly Detection on Big Data for Smart Factory Monitoring)

  • ;;김진술
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.789-799
    • /
    • 2018
  • 이 논문에서는 이러한 산업 단지 시스템에서의 비정상적인 동작이 일어날 때, 시간 계열의 데이터를 분석하기 위하여 Big 데이터를 이용한 접근을 기반으로 하는 머신 러닝을 보여줍니다. Long Short-Term Memory (LSTM) 네트워크는 향상된 RNN버전으로서 입증되었으며 많은 작업에 유용한 도움이 되었습니다. 이 LSTM 기반 모델은 시간적 패턴뿐만 아니라 더 높은 레벨의 시간적 특징을 학습 한 다음, 미래의 데이터를 예측하기 위해 예측 단계에 사용됩니다. 예측 오차는 예측 인자에 의해 예측 된 결과와 실제 예상되는 값의 차이입니다. 오차 분포 추정 모델은 가우스 분포를 사용하여 관찰 스코어의 이상을 계산합니다. 이러한 방식으로, 우리는 하나의 비정상적 데이터의 개념에서 집단적인 비정상적 데이터 개념으로 바뀌어 갑니다. 이 작업은 실패를 최소화하고 제조품질을 향상시키는 Smart Factory의 모니터링 및 관리를 지원할 수 있습니다.

딥러닝을 이용한 소외계층 아동의 스포츠 재활치료를 통한 정신 건강에 대한 변화 (Variation for Mental Health of Children of Marginalized Classes through Exercise Therapy using Deep Learning)

  • 김명미
    • 한국전자통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.725-732
    • /
    • 2020
  • 본 논문은 소외계층 아동의 운동학습프로그램에서 체력 활동 중 나를 잘 따른다(0-9), 마음의 결정을 내리는데 많은 시간이 걸린다(0-9), 맥빠진(0-9) 등을 변수로 사용하여 '성별', '체육교실', 나이의 '상중하'를 분류하고 스포츠 재활치료를 통한 자아 탄력(ego-resiliency)과 자아 통제(self-control)의 변화를 관찰하여 정신 건강 변화를 알아본다. 이를 위해 취득한 데이터를 병합하고 Label encoder와 One-hot encoding을 사용하여 숫자의 크고 작음의 특성을 제거한 후 MLP, SVM, Dicesion tree, RNN, LSTM의 각각의 알고리즘을 적용하여 성능을 평가하기 위해 Train, Test 데이터를 75%, 25% 스플릿 한 뒤 Train 데이터로 알고리즘을 학습하고 Test 데이터로 알고리즘의 정확성을 측정한다. 측정 결과 성별에서는 LSTM, 체육 교실은 MLP와 LSTM, 나이는 SVM이 가장 우수한 결과를 보임을 확인하였다.

Using machine learning to forecast and assess the uncertainty in the response of a typical PWR undergoing a steam generator tube rupture accident

  • Tran Canh Hai Nguyen ;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3423-3440
    • /
    • 2023
  • In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.

S2-Net: Machine reading comprehension with SRU-based self-matching networks

  • Park, Cheoneum;Lee, Changki;Hong, Lynn;Hwang, Yigyu;Yoo, Taejoon;Jang, Jaeyong;Hong, Yunki;Bae, Kyung-Hoon;Kim, Hyun-Ki
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.371-382
    • /
    • 2019
  • Machine reading comprehension is the task of understanding a given context and finding the correct response in that context. A simple recurrent unit (SRU) is a model that solves the vanishing gradient problem in a recurrent neural network (RNN) using a neural gate, such as a gated recurrent unit (GRU) and long short-term memory (LSTM); moreover, it removes the previous hidden state from the input gate to improve the speed compared to GRU and LSTM. A self-matching network, used in R-Net, can have a similar effect to coreference resolution because the self-matching network can obtain context information of a similar meaning by calculating the attention weight for its own RNN sequence. In this paper, we construct a dataset for Korean machine reading comprehension and propose an $S^2-Net$ model that adds a self-matching layer to an encoder RNN using multilayer SRU. The experimental results show that the proposed $S^2-Net$ model has performance of single 68.82% EM and 81.25% F1, and ensemble 70.81% EM, 82.48% F1 in the Korean machine reading comprehension test dataset, and has single 71.30% EM and 80.37% F1 and ensemble 73.29% EM and 81.54% F1 performance in the SQuAD dev dataset.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

단어그룹 확장 기법을 활용한 순환신경망 알고리즘 성능개선 연구 (A Study on Performance Improvement of Recurrent Neural Networks Algorithm using Word Group Expansion Technique)

  • 박대승;성열우;김정길
    • 산업융합연구
    • /
    • 제20권4호
    • /
    • pp.23-30
    • /
    • 2022
  • 최근 인공지능(AI)과 딥러닝 발전으로 대화형 인공지능 챗봇의 중요성이 부각되고 있으며 다양한 분야에서 연구가 진행되고 있다. 챗봇을 만들기 위해서 직접 개발해 사용하기도 하지만 개발의 용이성을 위해 오픈소스 플랫폼이나 상업용 플랫폼을 활용하여 개발한다. 이러한 챗봇 플랫폼은 주로 RNN (Recurrent Neural Network)과 응용 알고리즘을 사용하며, 빠른 학습속도와 모니터링 및 검증의 용이성 그리고 좋은 추론 성능의 장점을 가지고 있다. 본 논문에서는 RNN과 응용 알고리즘의 추론 성능 향상방법을 연구하였다. 제안 방법은 RNN과 응용 알고리즘 적용 시 각 문장에 대한 핵심단어의 단어그룹에 대해 확장학습을 통해 데이터에 내재된 의미를 넓히는 기법을 사용하였다. 본 연구의 결과는 순환 구조를 갖는 RNN, GRU (Gated Recurrent Unit), LSTM (Long-short Term Memory) 세 알고리즘에서 최소 0.37%에서 최대 1.25% 추론 성능향상을 달성하였다. 본 연구를 통해 얻은 연구결과는 관련 산업에서 인공지능 챗봇 도입을 가속하고 다양한 RNN 응용 알고리즘을 활용하도록 하는데 기여할 수 있다. 향후 연구에서는 다양한 활성 함수들이 인공신경망 알고리즘의 성능 향상에 미치는 영향에 관한 연구가 필요할 것이다.

LSTM-RNN 기반 음성합성을 위한 파라미터 생성 알고리즘 (Parameter Generation Algorithm for LSTM-RNN-based Speech Synthesis)

  • 박상준;한민수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.105-106
    • /
    • 2017
  • 본 논문에서는 최대 우도 기반 파라미터 생성 알고리즘을 적용하여 인공 신경망의 출력인 음향 파라미터 열의 정확성 및 자연성을 향상시키는 방법을 제안하였다. 인공 신경망의 출력으로 정적 특징벡터 뿐 만 아니라 동적 특징벡터도 함께 사용하였고, 미리 계산된 파라미터 분산을 파라미터 생성에 사용하였다. 추정된 정적, 동적 특징벡터의 평균, 분산을 EM 알고리즘에 적용하여 최대 우도 기준 파라미터를 추정할 수 있다. 제안된 알고리즘은 파라미터 생성 시 동적 특징벡터 및 분산을 함께 적용하여 시간축에서의 자연성을 향상시켰다. 제안된 알고리즘의 객관적 평가로 MCD, F0 의 RMSE 를 측정하였고, 주관적평가로 선호도 평가를 실시하였다. 그 결과 기존 알고리즘 대비 객관적, 주관적 성능이 향상되는 것을 검증하였다.

  • PDF