• 제목/요약/키워드: LSTM network

검색결과 454건 처리시간 0.023초

양방향 LSTM 순환신경망 기반 주가예측모델 (Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network)

  • 주일택;최승호
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.204-208
    • /
    • 2018
  • 본 논문에서는 시계열 데이터인 주가의 변동 패턴을 학습하고, 주가 가격을 예측하기 적합한 주가 예측 딥러닝 모델을 제시하고 평가하였다. 일반신경망에 시계열 개념이 추가되어 은닉계층에 이전 정보를 기억시킬 수 있는 순환신경망이 시계열 데이터인 주가 예측 모델로 적합하다. 순환신경망에서 나타나는 기울기 소멸문제를 해결하며, 장기의존성을 유지하기 위하여, 순환신경망의 내부에 작은 메모리를 가진 LSTM을 사용한다. 또한, 순환신경망의 시계열 데이터의 직전 패턴 기반으로만 학습하는 경향을 보이는 한계를 해결하기 위하여, 데이터의 흐름의 역방향에 은닉계층이 추가되는 양방향 LSTM 순환신경망을 이용하여 주가예측 모델을 구현하였다. 실험에서는 제시된 주가 예측 모델에 텐서플로우를 이용하여 주가와 거래량을 입력 값으로 학습을 하였다. 주가예측의 성능을 평가하기 위해서, 실제 주가와 예측된 주가 간의 평균 제곱근 오차를 구하였다. 실험결과로는 단방향 LSTM 순환신경망보다, 양방향 LSTM 순환신경망을 이용한 주가예측 모델이 더 작은 오차가 발생하여 주가 예측 정확성이 향상되었다.

Backward LSTM CRF를 이용한 한국어 의미역 결정 (Korean Semantic Role Labeling using Backward LSTM CRF)

  • 배장성;이창기;임수종
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.194-197
    • /
    • 2015
  • Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

해양환경 모니터링을 위한 순환 신경망 기반의 돌고래 클릭 신호 분류 알고리즘 개발 (Development of Dolphin Click Signal Classification Algorithm Based on Recurrent Neural Network for Marine Environment Monitoring)

  • 정서제;정우근;신성렬;김동현;김재수;변기훈;이다운
    • 지구물리와물리탐사
    • /
    • 제26권3호
    • /
    • pp.126-137
    • /
    • 2023
  • 본 연구에서는 해양 모니터링 중에 기록된 돌고래 클릭 신호를 분류하기 위해 순환 신경망(RNN)을 적용하는 방법을 검토했다. 클릭 신호 분류의 정확도를 높이기 위해 단일 시계열 자료를 분수 푸리에 변환을 사용하여 분수 영역으로 변환하여 특징을 확장했으며, 분류를 위한 최적의 네트워크를 결정하기 위해 세 가지 순환 신경망 모델(LSTM, GRU, BiLSTM)을 비교 분석하였다. 순환 신경망 모델의 입력 자료로써 이용된 분수 영역 자료의 경우, 분수 푸리에 변환 시 회전 각도에 따라 다른 특성을 가지므로, 각 네트워크 모델에 따라 우수한 성능을 가지는 회전 각도 범위를 분석했다. 이때 네트워크 성능 분석을 위해 정확도, 정밀도, 재현율, F1-점수와 같은 성능 평가 지표를 도입했다. 수치실험 결과, 세 가지 네트워크 모두 높은 성능을 보였으며, BiLSTM 네트워크가 LSTM, GRU에 비해 뛰어난 학습 결과를 제공했다. 마지막으로, 현장 자료 적용 가능성 측면에서 BiLSTM 네트워크가 다른 네트워크에 비해 낮은 오탐지 결과를 제공하였다.

LSTM 신경망과 Du-CNN을 융합한 적외선 방사특성 예측 및 표적과 클러터 구분을 위한 CR-DuNN 알고리듬 연구 (A Study of CR-DuNN based on the LSTM and Du-CNN to Predict Infrared Target Feature and Classify Targets from the Clutters)

  • 이주영
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.153-158
    • /
    • 2019
  • In this paper, we analyze the infrared feature for the small coast targets according to the surrounding environment for autonomous flight device equipped with an infrared imaging sensor and we propose Cross Duality of Neural Network (CR-DuNN) method which can classify the target and clutter in coastal environment. In coastal environment, there are various property according to diverse change of air temperature, sea temperature, deferent seasons. And small coast target have various infrared feature according to diverse change of environment. In this various environment, it is very important thing that we analyze and classify targets from the clutters to improve target detection accuracy. Thus, we propose infrared feature learning algorithm through LSTM neural network and also propose CR-DuNN algorithm that integrate LSTM prediction network with Du-CNN classification network to classify targets from the clutters.

LSTM 순환 신경망을 이용한 재료의 단축하중 하에서의 응력-변형률 곡선 예측 연구 (Prediction of the Stress-Strain Curve of Materials under Uniaxial Compression by Using LSTM Recurrent Neural Network)

  • 변훈;송재준
    • 터널과지하공간
    • /
    • 제28권3호
    • /
    • pp.277-291
    • /
    • 2018
  • 이 논문에서는 재료의 단축하중 하에서의 응력-변형률 곡선을 예측하기 위하여 순환 신경망의 일종인 LSTM(Long Short-Term Memory) 알고리즘을 사용하였다. 석고와 규사를 혼합해 만든 재료에 일축압축시험을 수행하여 얻은 응력-변형률 데이터를 이용하였으며, 낮은 응력 구간의 초반 데이터를 활용해서 파괴 전까지의 거동을 예측하였다. 앞부분의 데이터를 활용하여 단계적으로 뒤쪽 구간의 값을 예측하는 LSTM 순환 신경망의 구조상 큰 응력에 대응하는 변형률을 예측할 경우에는 앞쪽 구간의 오차가 누적되어 실측값과 차이가 늘어났으나 전반적으로 높은 정확도로 응력-변형률 곡선을 예측하였다. 예측에 사용한 초기 데이터의 길이가 늘어나는 경우 정확도는 조금 증가했다. 그러나 접선을 이용한 단순 예측과의 성능 차이는 초기 데이터의 길이가 작은 경우에 두드러졌으며, 적은양의 데이터로도 응력-변형률 곡선 전체 구간의 예측을 가능하게 한다는 점으로부터 신경망 모델의 필요성을 확인하였다.

Comparison of Fall Detection Systems Based on YOLOPose and Long Short-Term Memory

  • Seung Su Jeong;Nam Ho Kim;Yun Seop Yu
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.139-144
    • /
    • 2024
  • In this study, four types of fall detection systems - designed with YOLOPose, principal component analysis (PCA), convolutional neural network (CNN), and long short-term memory (LSTM) architectures - were developed and compared in the detection of everyday falls. The experimental dataset encompassed seven types of activities: walking, lying, jumping, jumping in activities of daily living, falling backward, falling forward, and falling sideways. Keypoints extracted from YOLOPose were entered into the following architectures: RAW-LSTM, PCA-LSTM, RAW-PCA-LSTM, and PCA-CNN-LSTM. For the PCA architectures, the reduced input size stemming from a dimensionality reduction enhanced the operational efficiency in terms of computational time and memory at the cost of decreased accuracy. In contrast, the addition of a CNN resulted in higher complexity and lower accuracy. The RAW-LSTM architecture, which did not include either PCA or CNN, had the least number of parameters, which resulted in the best computational time and memory while also achieving the highest accuracy.

Innovative Solutions for Design and Fabrication of Deep Learning Based Soft Sensor

  • Khdhir, Radhia;Belghith, Aymen
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.131-138
    • /
    • 2022
  • Soft sensors are used to anticipate complicated model parameters using data from classifiers that are comparatively easy to gather. The goal of this study is to use artificial intelligence techniques to design and build soft sensors. The combination of a Long Short-Term Memory (LSTM) network and Grey Wolf Optimization (GWO) is used to create a unique soft sensor. LSTM is developed to tackle linear model with strong nonlinearity and unpredictability of manufacturing applications in the learning approach. GWO is used to accomplish input optimization technique for LSTM in order to reduce the model's inappropriate complication. The newly designed soft sensor originally brought LSTM's superior dynamic modeling with GWO's exact variable selection. The performance of our proposal is demonstrated using simulations on real-world datasets.

순환 신경망에서 LSTM 블록을 사용한 영어와 한국어의 시편 생성기 비교 (Psalm Text Generator Comparison Between English and Korean Using LSTM Blocks in a Recurrent Neural Network)

  • 에런 스노버거;이충호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.269-271
    • /
    • 2022
  • 최근 몇 년 동안 LSTM 블록이 있는 RNN 네트워크는 순차적 데이터를 처리하는 기계 학습 작업에 광범위하게 사용되어왔다. 이러한 네트워크는 주어진 시퀀스에서 가능성이 다음으로 가장 높은 단어를 기존 신경망보다 더 정확하게 예측할 수 있기 때문에 순차적 언어 처리 작업에서 특히 우수한 것으로 입증되었다. 이 연구는 영어와 한국어로 된 150개의 성경 시편에 대한 세 가지 다른 번역에 대해 RNN/LSTM 신경망을 훈련하였다. 그런 다음 결과 모델에 입력 단어와 길이 번호를 제공하여 훈련 중에 인식한 패턴을 기반으로 원하는 길이의 새 시편을 자동으로 생성하였다. 영어 텍스트와 한국어 텍스트에 대한 네트워크 훈련 결과를 상호 비교하고 개선할 점을 기술한다.

  • PDF

Long Short-Term Memory Network for INS Positioning During GNSS Outages: A Preliminary Study on Simple Trajectories

  • Yujin Shin;Cheolmin Lee;Doyeon Jung;Euiho Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.137-147
    • /
    • 2024
  • This paper presents a novel Long Short-Term Memory (LSTM) network architecture for the integration of an Inertial Measurement Unit (IMU) and Global Navigation Satellite Systems (GNSS). The proposed algorithm consists of two independent LSTM networks and the LSTM networks are trained to predict attitudes and velocities from the sequence of IMU measurements and mechanization solutions. In this paper, three GNSS receivers are used to provide Real Time Kinematic (RTK) GNSS attitude and position information of a vehicle, and the information is used as a target output while training the network. The performance of the proposed method was evaluated with both experimental and simulation data using a lowcost IMU and three RTK-GNSS receivers. The test results showed that the proposed LSTM network could improve positioning accuracy by more than 90% compared to the position solutions obtained using a conventional Kalman filter based IMU/GNSS integration for more than 30 seconds of GNSS outages.

IoT 환경에서의 효율적인 LSTM 구성 (Efficient LSTM Configuration in IoT Environment)

  • 이종원;황철현;이성옥;송현옥;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.345-346
    • /
    • 2018
  • Internet of Things (IoT) data is collected in real time and is treated as highly reliable data because of its high precision. However, IoT data is not always highly reliable data. Because, data be often incomplete values for reasons such as sensor aging and failure, poor operating environment, and communication problems. So, we propose the methodology for solve this problem. Our methodology implements multiple LSTM networks to individually process the data collected from the sensors and a single LSTM network that batches the input data into an array. And, we propose an efficient method for constructing LSTM in IoT environment.

  • PDF