• Title/Summary/Keyword: LSTM Network

Search Result 454, Processing Time 0.027 seconds

Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network (양방향 LSTM 순환신경망 기반 주가예측모델)

  • Joo, Il-Taeck;Choi, Seung-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.204-208
    • /
    • 2018
  • In this paper, we proposed and evaluated the time series deep learning prediction model for learning fluctuation pattern of stock price. Recurrent neural networks, which can store previous information in the hidden layer, are suitable for the stock price prediction model, which is time series data. In order to maintain the long - term dependency by solving the gradient vanish problem in the recurrent neural network, we use LSTM with small memory inside the recurrent neural network. Furthermore, we proposed the stock price prediction model using bidirectional LSTM recurrent neural network in which the hidden layer is added in the reverse direction of the data flow for solving the limitation of the tendency of learning only based on the immediately preceding pattern of the recurrent neural network. In this experiment, we used the Tensorflow to learn the proposed stock price prediction model with stock price and trading volume input. In order to evaluate the performance of the stock price prediction, the mean square root error between the real stock price and the predicted stock price was obtained. As a result, the stock price prediction model using bidirectional LSTM recurrent neural network has improved prediction accuracy compared with unidirectional LSTM recurrent neural network.

Korean Semantic Role Labeling using Backward LSTM CRF (Backward LSTM CRF를 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki;Lim, Soojong
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.194-197
    • /
    • 2015
  • Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Development of Dolphin Click Signal Classification Algorithm Based on Recurrent Neural Network for Marine Environment Monitoring (해양환경 모니터링을 위한 순환 신경망 기반의 돌고래 클릭 신호 분류 알고리즘 개발)

  • Seoje Jeong;Wookeen Chung;Sungryul Shin;Donghyeon Kim;Jeasoo Kim;Gihoon Byun;Dawoon Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.126-137
    • /
    • 2023
  • In this study, a recurrent neural network (RNN) was employed as a methodological approach to classify dolphin click signals derived from ocean monitoring data. To improve the accuracy of click signal classification, the single time series data were transformed into fractional domains using fractional Fourier transform to expand its features. Transformed data were used as input for three RNN models: long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (BiLSTM), which were compared to determine the optimal network for the classification of signals. Because the fractional Fourier transform displayed different characteristics depending on the chosen angle parameter, the optimal angle range for each RNN was first determined. To evaluate network performance, metrics such as accuracy, precision, recall, and F1-score were employed. Numerical experiments demonstrated that all three networks performed well, however, the BiLSTM network outperformed LSTM and GRU in terms of learning results. Furthermore, the BiLSTM network provided lower misclassification than the other networks and was deemed the most practically appliable to field data.

A Study of CR-DuNN based on the LSTM and Du-CNN to Predict Infrared Target Feature and Classify Targets from the Clutters (LSTM 신경망과 Du-CNN을 융합한 적외선 방사특성 예측 및 표적과 클러터 구분을 위한 CR-DuNN 알고리듬 연구)

  • Lee, Ju-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.153-158
    • /
    • 2019
  • In this paper, we analyze the infrared feature for the small coast targets according to the surrounding environment for autonomous flight device equipped with an infrared imaging sensor and we propose Cross Duality of Neural Network (CR-DuNN) method which can classify the target and clutter in coastal environment. In coastal environment, there are various property according to diverse change of air temperature, sea temperature, deferent seasons. And small coast target have various infrared feature according to diverse change of environment. In this various environment, it is very important thing that we analyze and classify targets from the clutters to improve target detection accuracy. Thus, we propose infrared feature learning algorithm through LSTM neural network and also propose CR-DuNN algorithm that integrate LSTM prediction network with Du-CNN classification network to classify targets from the clutters.

Prediction of the Stress-Strain Curve of Materials under Uniaxial Compression by Using LSTM Recurrent Neural Network (LSTM 순환 신경망을 이용한 재료의 단축하중 하에서의 응력-변형률 곡선 예측 연구)

  • Byun, Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2018
  • LSTM (Long Short-Term Memory) algorithm which is a kind of recurrent neural network was used to establish a model to predict the stress-strain curve of an material under uniaxial compression. The model was established from the stress-strain data from uniaxial compression tests of silica-gypsum specimens. After training the model, it can predict the behavior of the material up to the failure state by using an early stage of stress-strain curve whose stress is very low. Because the LSTM neural network predict a value by using the previous state of data and proceed forward step by step, a higher error was found at the prediction of higher stress state due to the accumulation of error. However, this model generally predict the stress-strain curve with high accuracy. The accuracy of both LSTM and tangential prediction models increased with increased length of input data, while a difference in performance between them decreased as the amount of input data increased. LSTM model showed relatively superior performance to the tangential prediction when only few input data was given, which enhanced the necessity for application of the model.

Comparison of Fall Detection Systems Based on YOLOPose and Long Short-Term Memory

  • Seung Su Jeong;Nam Ho Kim;Yun Seop Yu
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.139-144
    • /
    • 2024
  • In this study, four types of fall detection systems - designed with YOLOPose, principal component analysis (PCA), convolutional neural network (CNN), and long short-term memory (LSTM) architectures - were developed and compared in the detection of everyday falls. The experimental dataset encompassed seven types of activities: walking, lying, jumping, jumping in activities of daily living, falling backward, falling forward, and falling sideways. Keypoints extracted from YOLOPose were entered into the following architectures: RAW-LSTM, PCA-LSTM, RAW-PCA-LSTM, and PCA-CNN-LSTM. For the PCA architectures, the reduced input size stemming from a dimensionality reduction enhanced the operational efficiency in terms of computational time and memory at the cost of decreased accuracy. In contrast, the addition of a CNN resulted in higher complexity and lower accuracy. The RAW-LSTM architecture, which did not include either PCA or CNN, had the least number of parameters, which resulted in the best computational time and memory while also achieving the highest accuracy.

Innovative Solutions for Design and Fabrication of Deep Learning Based Soft Sensor

  • Khdhir, Radhia;Belghith, Aymen
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.131-138
    • /
    • 2022
  • Soft sensors are used to anticipate complicated model parameters using data from classifiers that are comparatively easy to gather. The goal of this study is to use artificial intelligence techniques to design and build soft sensors. The combination of a Long Short-Term Memory (LSTM) network and Grey Wolf Optimization (GWO) is used to create a unique soft sensor. LSTM is developed to tackle linear model with strong nonlinearity and unpredictability of manufacturing applications in the learning approach. GWO is used to accomplish input optimization technique for LSTM in order to reduce the model's inappropriate complication. The newly designed soft sensor originally brought LSTM's superior dynamic modeling with GWO's exact variable selection. The performance of our proposal is demonstrated using simulations on real-world datasets.

Psalm Text Generator Comparison Between English and Korean Using LSTM Blocks in a Recurrent Neural Network (순환 신경망에서 LSTM 블록을 사용한 영어와 한국어의 시편 생성기 비교)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.269-271
    • /
    • 2022
  • In recent years, RNN networks with LSTM blocks have been used extensively in machine learning tasks that process sequential data. These networks have proven to be particularly good at sequential language processing tasks by being more able to accurately predict the next most likely word in a given sequence than traditional neural networks. This study trained an RNN / LSTM neural network on three different translations of 150 biblical Psalms - in both English and Korean. The resulting model is then fed an input word and a length number from which it automatically generates a new Psalm of the desired length based on the patterns it recognized while training. The results of training the network on both English text and Korean text are compared and discussed.

  • PDF

Long Short-Term Memory Network for INS Positioning During GNSS Outages: A Preliminary Study on Simple Trajectories

  • Yujin Shin;Cheolmin Lee;Doyeon Jung;Euiho Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.137-147
    • /
    • 2024
  • This paper presents a novel Long Short-Term Memory (LSTM) network architecture for the integration of an Inertial Measurement Unit (IMU) and Global Navigation Satellite Systems (GNSS). The proposed algorithm consists of two independent LSTM networks and the LSTM networks are trained to predict attitudes and velocities from the sequence of IMU measurements and mechanization solutions. In this paper, three GNSS receivers are used to provide Real Time Kinematic (RTK) GNSS attitude and position information of a vehicle, and the information is used as a target output while training the network. The performance of the proposed method was evaluated with both experimental and simulation data using a lowcost IMU and three RTK-GNSS receivers. The test results showed that the proposed LSTM network could improve positioning accuracy by more than 90% compared to the position solutions obtained using a conventional Kalman filter based IMU/GNSS integration for more than 30 seconds of GNSS outages.

Efficient LSTM Configuration in IoT Environment (IoT 환경에서의 효율적인 LSTM 구성)

  • Lee, Jongwon;Hwang, Chulhyun;Lee, Sungock;Song, Hyunok;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.345-346
    • /
    • 2018
  • Internet of Things (IoT) data is collected in real time and is treated as highly reliable data because of its high precision. However, IoT data is not always highly reliable data. Because, data be often incomplete values for reasons such as sensor aging and failure, poor operating environment, and communication problems. So, we propose the methodology for solve this problem. Our methodology implements multiple LSTM networks to individually process the data collected from the sensors and a single LSTM network that batches the input data into an array. And, we propose an efficient method for constructing LSTM in IoT environment.

  • PDF