• Title/Summary/Keyword: LSTM Model

Search Result 686, Processing Time 0.022 seconds

Performance Evaluation of Concrete Drying Shrinkage Prediction Using DNN and LSTM (DNN과 LSTM을 활용한 콘크리트의 건조수축량 예측성능 평가)

  • Han, Jun-Hui;Lim, Gun-Su;Lee, Hyeon-Jik;Park, Jae-Woong;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.179-180
    • /
    • 2023
  • In this study, the performance of the prediction model was compared and analyzed using DNN and LSTM learning models to predict the amount of dry shrinkage of the concrete. As a result of the analysis, DNN model had a high error rate of about 51%, indicating overfitting to the training data. But, the LSTM learning model showed a relatively higher accuracy with an error rate of 12% compared to the DNN model. Also, the Pre_LSTM model which preprocess data, showed the performance with an error rate of 9% and a coefficient of determination of 0.887 in the LSTM learning model.

  • PDF

Prediction of Highy Pathogenic Avian Influenza(HPAI) Diffusion Path Using LSTM (LSTM을 활용한 고위험성 조류인플루엔자(HPAI) 확산 경로 예측)

  • Choi, Dae-Woo;Lee, Won-Been;Song, Yu-Han;Kang, Tae-Hun;Han, Ye-Ji
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • The study was conducted with funding from the government (Ministry of Agriculture, Food and Rural Affairs) in 2018 with support from the Agricultural, Food, and Rural Affairs Agency, 318069-03-HD040, and in based on artificial intelligence-based HPAI spread analysis and patterning. The model that is actively used in time series and text mining recently is LSTM (Long Short-Term Memory Models) model utilizing deep learning model structure. The LSTM model is a model that emerged to resolve the Long-Term Dependency Problem that occurs during the Backpropagation Through Time (BPTT) process of RNN. LSTM models have resolved the problem of forecasting very well using variable sequence data, and are still widely used.In this paper study, we used the data of the Call Detailed Record (CDR) provided by KT to identify the migration path of people who are expected to be closely related to the virus. Introduce the results of predicting the path of movement by learning the LSTM model using the path of the person concerned. The results of this study could be used to predict the route of HPAI propagation and to select routes or areas to focus on quarantine and to reduce HPAI spread.

Performance Comparison of LSTM-Based Groundwater Level Prediction Model Using Savitzky-Golay Filter and Differential Method (Savitzky-Golay 필터와 미분을 활용한 LSTM 기반 지하수 수위 예측 모델의 성능 비교)

  • Keun-San Song;Young-Jin Song
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.84-89
    • /
    • 2023
  • In water resource management, data prediction is performed using artificial intelligence, and companies, governments, and institutions continue to attempt to efficiently manage resources through this. LSTM is a model specialized for processing time series data, which can identify data patterns that change over time and has been attempted to predict groundwater level data. However, groundwater level data can cause sen-sor errors, missing values, or outliers, and these problems can degrade the performance of the LSTM model, and there is a need to improve data quality by processing them in the pretreatment stage. Therefore, in pre-dicting groundwater data, we will compare the LSTM model with the MSE and the model after normaliza-tion through distribution, and discuss the important process of analysis and data preprocessing according to the comparison results and changes in the results.

  • PDF

Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble (LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의)

  • An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.

An Explainable Deep Learning Algorithm based on Video Classification (비디오 분류에 기반 해석가능한 딥러닝 알고리즘)

  • Jin Zewei;Inwhee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.449-452
    • /
    • 2023
  • The rapid development of the Internet has led to a significant increase in multimedia content in social networks. How to better analyze and improve video classification models has become an important task. Deep learning models have typical "black box" characteristics. The model requires explainable analysis. This article uses two classification models: ConvLSTM and VGG16+LSTM models. And combined with the explainable method of LRP, generate visualized explainable results. Finally, based on the experimental results, the accuracy of the classification model is: ConvLSTM: 75.94%, VGG16+LSTM: 92.50%. We conducted explainable analysis on the VGG16+LSTM model combined with the LRP method. We found VGG16+LSTM classification model tends to use the frames biased towards the latter half of the video and the last frame as the basis for classification.

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

Enhancing the Text Mining Process by Implementation of Average-Stochastic Gradient Descent Weight Dropped Long-Short Memory

  • Annaluri, Sreenivasa Rao;Attili, Venkata Ramana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.352-358
    • /
    • 2022
  • Text mining is an important process used for analyzing the data collected from different sources like videos, audio, social media, and so on. The tools like Natural Language Processing (NLP) are mostly used in real-time applications. In the earlier research, text mining approaches were implemented using long-short memory (LSTM) networks. In this paper, text mining is performed using average-stochastic gradient descent weight-dropped (AWD)-LSTM techniques to obtain better accuracy and performance. The proposed model is effectively demonstrated by considering the internet movie database (IMDB) reviews. To implement the proposed model Python language was used due to easy adaptability and flexibility while dealing with massive data sets/databases. From the results, it is seen that the proposed LSTM plus weight dropped plus embedding model demonstrated an accuracy of 88.36% as compared to the previous models of AWD LSTM as 85.64. This result proved to be far better when compared with the results obtained by just LSTM model (with 85.16%) accuracy. Finally, the loss function proved to decrease from 0.341 to 0.299 using the proposed model

Real-time PM10 Concentration Prediction LSTM Model based on IoT Streaming Sensor data (IoT 스트리밍 센서 데이터에 기반한 실시간 PM10 농도 예측 LSTM 모델)

  • Kim, Sam-Keun;Oh, Tack-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.310-318
    • /
    • 2018
  • Recently, the importance of big data analysis is increasing as a large amount of data is generated by various devices connected to the Internet with the advent of Internet of Things (IoT). Especially, it is necessary to analyze various large-scale IoT streaming sensor data generated in real time and provide various services through new meaningful prediction. This paper proposes a real-time indoor PM10 concentration prediction LSTM model based on streaming data generated from IoT sensor using AWS. We also construct a real-time indoor PM10 concentration prediction service based on the proposed model. Data used in the paper is streaming data collected from the PM10 IoT sensor for 24 hours. This time series data is converted into sequence data consisting of 30 consecutive values from time series data for use as input data of LSTM. The LSTM model is learned through a sliding window process of moving to the immediately adjacent dataset. In order to improve the performance of the model, incremental learning method is applied to the streaming data collected every 24 hours. The linear regression and recurrent neural networks (RNN) models are compared to evaluate the performance of LSTM model. Experimental results show that the proposed LSTM prediction model has 700% improvement over linear regression and 140% improvement over RNN model for its performance level.

Prediction of the Stress-Strain Curve of Materials under Uniaxial Compression by Using LSTM Recurrent Neural Network (LSTM 순환 신경망을 이용한 재료의 단축하중 하에서의 응력-변형률 곡선 예측 연구)

  • Byun, Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2018
  • LSTM (Long Short-Term Memory) algorithm which is a kind of recurrent neural network was used to establish a model to predict the stress-strain curve of an material under uniaxial compression. The model was established from the stress-strain data from uniaxial compression tests of silica-gypsum specimens. After training the model, it can predict the behavior of the material up to the failure state by using an early stage of stress-strain curve whose stress is very low. Because the LSTM neural network predict a value by using the previous state of data and proceed forward step by step, a higher error was found at the prediction of higher stress state due to the accumulation of error. However, this model generally predict the stress-strain curve with high accuracy. The accuracy of both LSTM and tangential prediction models increased with increased length of input data, while a difference in performance between them decreased as the amount of input data increased. LSTM model showed relatively superior performance to the tangential prediction when only few input data was given, which enhanced the necessity for application of the model.

Two-Dimensional Attention-Based LSTM Model for Stock Index Prediction

  • Yu, Yeonguk;Kim, Yoon-Joong
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1231-1242
    • /
    • 2019
  • This paper presents a two-dimensional attention-based long short-memory (2D-ALSTM) model for stock index prediction, incorporating input attention and temporal attention mechanisms for weighting of important stocks and important time steps, respectively. The proposed model is designed to overcome the long-term dependency, stock selection, and stock volatility delay problems that negatively affect existing models. The 2D-ALSTM model is validated in a comparative experiment involving the two attention-based models multi-input LSTM (MI-LSTM) and dual-stage attention-based recurrent neural network (DARNN), with real stock data being used for training and evaluation. The model achieves superior performance compared to MI-LSTM and DARNN for stock index prediction on a KOSPI100 dataset.