• Title/Summary/Keyword: LSTM 언어모델

Search Result 100, Processing Time 0.026 seconds

A Study on the OCR of Korean Sentence Using DeepLearning (딥러닝을 활용한 한글문장 OCR연구)

  • Park, Sun-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.470-474
    • /
    • 2019
  • 한글 OCR 성능을 높이기 위해 딥러닝 모델을 활용하여 문자인식 부분을 개선하고자 하였다. 본 논문에서는 폰트와 사전데이터를 사용해 딥러닝 모델 학습을 위한 한글 문장 이미지 데이터를 직접 생성해보고 이를 활용해서 한글 문장의 OCR 성능을 높일 다양한 모델 조합들에 대한 실험을 진행했다. 딥러닝 모델은 STR(Scene Text Recognition) 구조를 사용해 변환, 추출, 시퀀스, 예측 모듈 각 24가지 모델 조합을 구성했다. 딥러닝 모델을 활용한 OCR 실험 결과 한글 문장에 적합한 모델조합은 변환 모듈을 사용하고 시퀀스와 예측 모듈에는 BiLSTM과 어텐션을 사용한 모델조합이 다른 모델 조합에 비해 높은 성능을 보였다. 해당 논문에서는 이전 한글 OCR 연구와 비교해 적용 범위를 글자 단위에서 문장 단위로 확장하였고 실제 문서 이미지에서 자주 발견되는 유형의 데이터를 사용해 애플리케이션 적용 가능성을 높이고자 한 부분에 의의가 있다.

  • PDF

Hierarchical Automated Essay Evaluation Model Using Korean Sentence-Bert Embedding (한국어 Sentence-BERT 임베딩을 활용한 자동 쓰기 평가 계층적 구조 모델)

  • Minsoo Cho;Oh Woog Kwon;Young Kil Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.526-530
    • /
    • 2022
  • 자동 쓰기 평가 연구는 쓰기 답안지를 채점하는데 드는 시간과 비용을 절감할 수 있어, 교육 분야에서 큰 관심을 가지고 있다. 본 연구의 목적은 쓰기 답안지의 문서 구조를 효과적으로 학습하여 평가하고, 문장단위의 피드백을 제공하는데 있다. 그 방법으로는 문장 레벨에서 한국어 Sentence-BERT 모델을 활용하여 각 문장을 임베딩하고, LSTM 어텐션 모델을 활용하여 문서 레벨에서 임베딩 문장을 모델링한다. '한국어 쓰기 텍스트-점수 구간 데이터'를 활용하여 해당 모델의 성능 평가를 진행하였으며, 다양한 KoBERT 기반 모델과 비교 평가를 통해 제안하는 모델의 방법론이 효과적임을 입증하였다.

  • PDF

KoELMo: Deep Contextualized word representations for Korean (KoELMo: 한국어를 위한 문맥화된 단어 표상)

  • Hong, Seung-Yean;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.296-298
    • /
    • 2018
  • 기존의 Word2Vec이나 Glove 등의 단어 임베딩 모델은 문맥에 상관없이 단어의 Vector들이 고정된 Vector를 가지는 문제가 있다. ELMo는 훈련된 Bi-LSTM 모델을 통해서 문장마다 Word Embedding을 수행하기 때문에 문맥에 상관없이 고정된 Vector를 가지는 문제를 해결하였다. 본 논문에서는 한국어와 같이 형태적으로 복잡한 언어의 경우 수 많은 단어가 파생될 수 있어 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있기 때문에 형태소의 표상들을 결합하여 단어 표상을 사용한 ELMo를 제안한다. ELMo 단어 임베딩을 Biaffine attention 파싱 모델에 적용 결과 UAS에서 91.39%, LAS에서 90.79%으로 기존의 성능보다 향상된 성능을 얻었다.

  • PDF

A Korean speech recognition based on conformer (콘포머 기반 한국어 음성인식)

  • Koo, Myoung-Wan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.488-495
    • /
    • 2021
  • We propose a speech recognition system based on conformer. Conformer is known to be convolution-augmented transformer, which combines transfer model for capturing global information with Convolution Neural Network (CNN) for exploiting local feature effectively. The baseline system is developed to be a transfer-based speech recognition using Long Short-Term Memory (LSTM)-based language model. The proposed system is a system which uses conformer instead of transformer with transformer-based language model. When Electronics and Telecommunications Research Institute (ETRI) speech corpus in AI-Hub is used for our evaluation, the proposed system yields 5.7 % of Character Error Rate (CER) while the baseline system results in 11.8 % of CER. Even though speech corpus is extended into other domain of AI-hub such as NHNdiguest speech corpus, the proposed system makes a robust performance for two domains. Throughout those experiments, we can prove a validation of the proposed system.

A Transition based Joint Model for Korean POS Tagging & Dependency Parsing using Deep Learning (딥러닝을 이용한 전이 기반 한국어 품사 태깅 & 의존 파싱 통합 모델)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.97-102
    • /
    • 2017
  • 형태소 분석과 의존 파싱은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있다. 이러한 핵심적인 역할을 수행하는 형태소 분석과 의존 파싱에 대해 일괄적으로 학습하는 통합 모델에 대한 필요성이 대두 되었고 이에 대한 많은 연구들이 수행되었다. 기존의 형태소 분석 & 의존 파싱 통합 모델은 먼저 형태소 분석 및 품사 태깅에 대한 학습을 수행한 후 이어서 의존 파싱 모델을 학습하는 파이프라인 방식으로 진행되었다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 형태소 분석과 파싱이 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱에서 형태소 분석에 대한 전이 액션을 포함하도록 전이 액션을 확장하여 한국어 형태소 분석 & 의존파싱에 대한 통합모델을 제안하였고 성능 측정 결과 세종 형태소 분석 데이터 셋에서 F1 97.63%, SPMRL '14 한국어 의존 파싱 데이터 셋에서 UAS 90.48%, LAS 88.87%의 성능을 보여주어 기존의 의존 파싱 성능을 더욱 향상시켰다.

  • PDF

Sentiment Analysis System by Using BERT Language Model (BERT 언어 모델을 이용한 감정 분석 시스템)

  • Kim, Taek-Hyun;Cho, Dan-Bi;Lee, Hyun-Young;Won, Hye-Jin;Kang, Seung-Shik
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.975-977
    • /
    • 2020
  • 감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.

End-to-end Neural Model for Keyphrase Extraction using Twitter Hash-tag Data (트위터 해시 태그를 이용한 End-to-end 뉴럴 모델 기반 키워드 추출)

  • Lee, Young-Hoon;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.176-178
    • /
    • 2018
  • 트위터는 최대 140자의 단문을 주고받는 소셜 네트워크 서비스이다. 트위터의 해시 태그는 주로 문장의 핵심 단어나 주요 토픽 등을 링크하게 되는데 본 논문에서는 이러한 정보를 이용하여 키워드 추출에 활용한다. 문장을 Character CNN, Bi-LSTM을 통해 문장 표현을 얻어내고 각 Span에서 이러한 문장 표현을 활용하여 Span 표현을 생성한다. Span 표현을 이용하여 각 Span에 대한 Score를 얻고 높은 점수의 Span을 이용하여 키워드를 추출한다.

  • PDF

Korean Dependency Parsing using Second-Order TreeCRF (Second-Order TreeCRF를 이용한 한국어 의존 파싱)

  • Min, Jinwoo;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.108-111
    • /
    • 2020
  • 한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔으며 현재 가장 높은 성능을 보이고 있는 그래프 기반 파서인 Biaffine 어텐션 모델은 입력 시퀀스를 다층의 LSTM을 통해 인코딩 한 후 각각 별도의 MLP를 적용하여 의존소와 지배소에 대한 표상을 얻고 이를 Biaffine 어텐션을 통해 모든 의존소에 대한 지배소의 점수를 얻는 모델이다. 위의 Biaffine 어텐션 모델은 별도의 High-Order 정보를 활용하지 않는 first-order 파싱 모델이며 학습과정에서 어떠한 트리 관련 손실을 얻지 않는다. 본 연구에서는 같은 부모를 공유하는 형제 노드에 대한 점수를 모델링하고 정답 트리에 대한 조건부 확률을 모델링 하는 Second-Order TreeCRF 모델을 한국어 의존 파싱에 적용하여 실험 결과를 보인다.

  • PDF

A Fuzzy-AHP-based Movie Recommendation System with the Bidirectional Recurrent Neural Network Language Model (양방향 순환 신경망 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.525-531
    • /
    • 2020
  • In today's IT environment where various pieces of information are distributed in large volumes, recommendation systems are in the spotlight capable of figuring out users' needs fast and helping them with their decisions. The current recommendation systems, however, have a couple of problems including that user preference may not be reflected on the systems right away according to their changing tastes or interests and that items with no relations to users' preference may be recommended, being induced by advertising. In an effort to solve these problems, this study set out to propose a Fuzzy-AHP-based movie recommendation system by applying the BRNN(Bidirectional Recurrent Neural Network) language model. Applied to this system was Fuzzy-AHP to reflect users' tastes or interests in clear and objective ways. In addition, the BRNN language model was adopted to analyze movie-related data collected in real time and predict movies preferred by users. The system was assessed for its performance with grid searches to examine the fitness of the learning model for the entire size of word sets. The results show that the learning model of the system recorded a mean cross-validation index of 97.9% according to the entire size of word sets, thus proving its fitness. The model recorded a RMSE of 0.66 and 0.805 against the movie ratings on Naver and LSTM model language model, respectively, demonstrating the system's superior performance in predicting movie ratings.

Neural transition-based joint models for dependency Parsing and semantic role labeling of Korean (뉴럴 전이 기반 한국어 의존 파싱 & 의미역 결정 통합 모델)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hun;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.343-346
    • /
    • 2018
  • 기존의 의미역 결정은 먼저 구문 분석을 수행한 후에 해당 구문 분석 결과를 이용해 의미역 결정 테스크에 적용하는 파이프라인 방식으로 진행한다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 구문 파싱과 의미 파싱에 대해 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱과 의미역 파싱을 동시에 진행하도록 전이 액션을 확장한 의존 파싱 & 의미역 결정 통합 모델을 제안하고 실험 결과, Korean Prop Bank 의미역 결정 데이터 셋에서 파이프라인 방식 전이 기반 방식을 사용한 모델보다 논항 인식 및 분류(AIC) 성능에서 F1 기준 0.14% 높은 결과을 보인다.

  • PDF