Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2018.10a
- /
- Pages.343-346
- /
- 2018
- /
- 2005-3053(pISSN)
Neural transition-based joint models for dependency Parsing and semantic role labeling of Korean
뉴럴 전이 기반 한국어 의존 파싱 & 의미역 결정 통합 모델
- Min, Jin-Woo (Chonbuk National University) ;
- Na, Seung-Hoon (Chonbuk National University) ;
- Sin, Jong-Hun (ETRI) ;
- Kim, Young-Kil (ETRI)
- Published : 2018.10.12
Abstract
기존의 의미역 결정은 먼저 구문 분석을 수행한 후에 해당 구문 분석 결과를 이용해 의미역 결정 테스크에 적용하는 파이프라인 방식으로 진행한다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 구문 파싱과 의미 파싱에 대해 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱과 의미역 파싱을 동시에 진행하도록 전이 액션을 확장한 의존 파싱 & 의미역 결정 통합 모델을 제안하고 실험 결과, Korean Prop Bank 의미역 결정 데이터 셋에서 파이프라인 방식 전이 기반 방식을 사용한 모델보다 논항 인식 및 분류(AIC) 성능에서 F1 기준 0.14% 높은 결과을 보인다.