• Title/Summary/Keyword: LSTM 언어모델

Search Result 100, Processing Time 0.024 seconds

Korean Named Entity Recognition using Joint Learning with Language Model (언어 모델 다중 학습을 이용한 한국어 개체명 인식)

  • Kim, Byeong-Jae;Park, Chan-min;Choi, Yoon-Young;Kwon, Myeong-Joon;Seo, Jeong-Yeon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.333-337
    • /
    • 2017
  • 본 논문에서는 개체명 인식과 언어 모델의 다중 학습을 이용한 한국어 개체명 인식 방법을 제안한다. 다중 학습은 1 개의 모델에서 2 개 이상의 작업을 동시에 분석하여 성능 향상을 기대할 수 있는 방법이지만, 이를 적용하기 위해서 말뭉치에 각 작업에 해당하는 태그가 부착되어야 하는 문제가 있다. 본 논문에서는 추가적인 태그 부착 없이 정보를 획득할 수 있는 언어 모델을 개체명 인식 작업과 결합하여 성능 향상을 이루고자 한다. 또한 단순한 형태소 입력의 한계를 극복하기 위해 입력 표상을 자소 및 형태소 품사의 임베딩으로 확장하였다. 기계 학습 방법은 순차적 레이블링에서 높은 성능을 제공하는 Bi-directional LSTM CRF 모델을 사용하였고, 실험 결과 언어 모델이 개체명 인식의 오류를 효과적으로 개선함을 확인하였다.

  • PDF

Swearword Detection Method Considering Meaning of Words and Sentences (단어와 문장의 의미를 고려한 비속어 판별 방법)

  • Yi, Moung Ho;Lim, Myung Jin;Shin, Ju Hyun
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.98-106
    • /
    • 2020
  • Currently, as Internet users increase, the use of swearword is indiscriminately increasing. As a result, cyber violence among teenagers is increasing very seriously, and among them, cyber-language violence is the most serious. In order to eradicate cyber-language violence, research on detection of swearword has been conducted, but the method of detecting swearword by looking at the meaning of words and the flow of context is insufficient. Therefore,in this paper,we propose a method of detecting swearword using FastText model and LSTM model so that deliberately modified swearword and standard language can be accurately detected by looking at the flow of context.

Comparing Features, Models and Training for Span-based Entity Extraction (스팬 기반 개체 추출을 위한 자질, 모델, 학습 방법 비교)

  • Seungwoo Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.388-392
    • /
    • 2023
  • 개체 추출은 정보추출의 기초를 구성하는 태스크로, 관계 추출, 이벤트 추출 등 다양한 정보추출 태스크의 기반으로 중요하다. 최근에는 다중 레이블 개체와 중첩 개체를 다루기 위해 스팬기반의 개체추출이 주류로 연구되고 있다. 본 논문에서는 스팬을 표현하는 다양한 매핑과 자질들을 살펴보고 개체추출의 성능에 어떤 영향을 주는지를 분석하여 최적의 매핑 및 자질 조합을 제시하였다. 또한, 모델 구조에 있어서, 사전 학습 언어모델(PLM) 위에 BiLSTM 블록의 추가 여부에 따른 성능 변화를 분석하고, 모델의 학습에 있어서, 미세조정(finetuing) 이전에 예열학습(warmup training)을 사용하는 것이 효과적인지를 실험을 통해 비교 분석하여 제시하였다.

  • PDF

Application of Word Vector with Korean Specific Feature to Bi-LSTM model for Named Entity Recognition (한국어 특질을 고려한 단어 벡터의 Bi-LSTM 기반 개체명 모델 적용)

  • Nam, Sukhyun;Hahm, Younggyun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.147-150
    • /
    • 2017
  • Deep learning의 개발에 따라 개체명 인식에도 neural network가 적용된 연구가 활발히 일어나고 있다. 영어권 개체명 인식에서는 F1 score 90%을 웃도는 성능을 내는 연구들이 나오고 있다. 하지만 한국어는 영어와 언어적 특질이 많이 달라 이를 그대로 적용시키는 데는 어려움이 있어 영어권 개체명 인식기에 비해 비교적 낮은 성능을 보인다. 본 논문에서는 "하다" 접사의 동사형이 보존된 워드 임베딩을 사용하고 한국어 개체명의 특징을 담은 one-hot 벡터를 추가하여 한국어의 특질에 보다 적합한 데이터를 deep learning 기술에 적용하였다.

  • PDF

Song-lyrics Generation system by Deep Learning (딥러닝 기법을 이용한 노래 가사 생성 시스템)

  • Son, Sung-Hwan;Lee, Hyun-Young;Nam, Gyu-Hyeon;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.570-573
    • /
    • 2018
  • 본 논문에서는 한국 가요 학습 데이터를 노래 가사 마디 단위로 문자열을 역전시키는 형태로 변형하고 LSTM으로 학습하여, 마디 간의 문맥을 고려해 문자열을 생성하는 방법에 대해 제안한다. 그리고 이를 통해 특정 가요 가사와 유사하면서도 다른 가사를 생성하는 것도 가능하다. 문자열의 우측 끝에 위치하면서 마디 간의 문맥을 연결해 주는 서술어, 접속사와 같은 요소를 활용하기 위해 데이터를 변형하여 적용한다. 제안하는 방식으로 생성한 문자열이 단순히 문자열 데이터를 그대로 학습하여 생성하는 것보다 상대적으로 더 자연스러운 문맥으로 생성되는 것을 확인하였다.

  • PDF

Metonymy Resolution based on Neural Approach (딥러닝 방식을 이용한 환유 해소)

  • Whang, Taesun;Lee, Chanhee;Yang, Kisu;Lee, Dongyub;Koo, Youngeun;Jeon, Taehee;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.375-379
    • /
    • 2019
  • 언어학에서의 환유법은 표현을 위해 빌려온 대상이 다양한 의미로 해석 가능하기에 매우 어렵고 난해한 분야이다. 환유의 특성 상 주어진 엔티티의 환유 여부를 구분하기 위해서는 앞뒤 단어와의 연관성 뿐만 아니라 문장 전체의 문맥 정보에 대한 고려가 필수적이다. 최근 이러한 문맥 정보를 고려하여 학습된 다양한 모델들이 등장하면서 환유법에 대한 연구를 하기에 좋은 환경이 구축되고 있다. 본 논문에서는 언어학적 자질 정보를 최소화한 딥러닝을 이용한 환유 해소 모델을 제안한다. LSTM 기반의 feature-based 모델과 및 BERT, XLNet, RoBERTa와 같은 fine-tuning 모델들에 대한 실험을 진행하였다. 실험 결과, fine-tuning 모델들이 baseline과 비교하여 뛰어난 성능 향상을 가져왔으며, 특히 XLNet 모델은 두 개의 환유 해소 데이터 SemEval 2007와 ReLocaR에 대해 각각 90.1%과 95.8%의 정확도를 보여주었다.

  • PDF

Korean Named Entity Recognition using Joint Learning with Language Model (언어 모델 다중 학습을 이용한 한국어 개체명 인식)

  • Kim, Byeong-Jae;Park, Chan-min;Choi, Yoon-Young;Kwon, Myeong-Joon;Seo, Jeong-Yeon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.333-337
    • /
    • 2017
  • 본 논문에서는 개체명 인식과 언어 모델의 다중 학습을 이용한 한국어 개체명 인식 방법을 제안한다. 다중 학습은 1 개의 모델에서 2 개 이상의 작업을 동시에 분석하여 성능 향상을 기대할 수 있는 방법이지만, 이를 적용하기 위해서 말뭉치에 각 작업에 해당하는 태그가 부착되어야 하는 문제가 있다. 본 논문에서는 추가적인 태그 부착 없이 정보를 획득할 수 있는 언어 모델을 개체명 인식 작업과 결합하여 성능 향상을 이루고자 한다. 또한 단순한 형태소 입력의 한계를 극복하기 위해 입력 표상을 자소 및 형태소 품사의 임베딩으로 확장하였다. 기계 학습 방법은 순차적 레이블링에서 높은 성능을 제공하는 Bi-directional LSTM CRF 모델을 사용하였고, 실험 결과 언어 모델이 개체명 인식의 오류를 효과적으로 개선함을 확인하였다.

  • PDF

Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network (종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기)

  • Lee, Hyun Young;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.441-448
    • /
    • 2019
  • Previous researches on automatic spacing of Korean sentences has been researched to correct spacing errors by using n-gram based statistical techniques or morpheme analyzer to insert blanks in the word boundary. In this paper, we propose an end-to-end automatic word spacing by using deep neural network. Automatic word spacing problem could be defined as a tag classification problem in unit of syllable other than word. For contextual representation between syllables, Bi-LSTM encodes the dependency relationship between syllables into a fixed-length vector of continuous vector space using forward and backward LSTM cell. In order to conduct automatic word spacing of Korean sentences, after a fixed-length contextual vector by Bi-LSTM is classified into auto-spacing tag(B or I), the blank is inserted in the front of B tag. For tag classification method, we compose three types of classification neural networks. One is feedforward neural network, another is neural network language model and the other is linear-chain CRF. To compare our models, we measure the performance of automatic word spacing depending on the three of classification networks. linear-chain CRF of them used as classification neural network shows better performance than other models. We used KCC150 corpus as a training and testing data.

Psalm Text Generator Comparison Between English and Korean Using LSTM Blocks in a Recurrent Neural Network (순환 신경망에서 LSTM 블록을 사용한 영어와 한국어의 시편 생성기 비교)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.269-271
    • /
    • 2022
  • In recent years, RNN networks with LSTM blocks have been used extensively in machine learning tasks that process sequential data. These networks have proven to be particularly good at sequential language processing tasks by being more able to accurately predict the next most likely word in a given sequence than traditional neural networks. This study trained an RNN / LSTM neural network on three different translations of 150 biblical Psalms - in both English and Korean. The resulting model is then fed an input word and a length number from which it automatically generates a new Psalm of the desired length based on the patterns it recognized while training. The results of training the network on both English text and Korean text are compared and discussed.

  • PDF

A Symptom Recognition Method of Diseases for Senior User Based on Language Model (시니어 사용자를 위한 언어 모델 기반 질환 증상 인식 방법)

  • Park, Min-Kyung;Choi, Jin-Woo;Whangbo, Taeg-Keun
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.461-463
    • /
    • 2020
  • 2025년 초고령 사회로 진입할 것으로 예상됨에 따라 고령화 시대에 발생하는 문제점들을 IT기술을 응용하여 지능적으로 해결할 수 있는 인공지능 헬스케어 솔루션이 주목받고 있다. BIS리서치의 보고서에 따르면 헬스케어 산업의 챗봇 시장 규모가 2029년 약 4억 9,800만 달러로 성장할 것으로 예상된다. 따라서 시니어 사용자를 위한 기술 연구가 적극적으로 필요한 시점이다. 본 논문에서는 사전학습한 언어모델과 BiLSTM기반 신경망 모델을 이용하여 시니어 사용자에게 특화된 질환 증상 인식 모델 구현에 관한 범위 및 방법에 관해 기술한다. 이는 시니어 대상 건강관리 챗봇 솔루션에 도입하여 시니어 사용자에게 자주 발생하는 질환들을 조기에 발견할 수 있도록 지원하여 위험의 발생 예방에 도움을 주는 서비스가 될 것으로 전망한다.