• 제목/요약/키워드: LS-SVM

검색결과 51건 처리시간 0.019초

Multiclass Classification via Least Squares Support Vector Machine Regression

  • Shim, Joo-Yong;Bae, Jong-Sig;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제15권3호
    • /
    • pp.441-450
    • /
    • 2008
  • In this paper we propose a new method for solving multiclass problem with least squares support vector machine(LS-SVM) regression. This method implements one-against-all scheme which is as accurate as any other approach. We also propose cross validation(CV) method to select effectively the optimal values of hyper-parameters which affect the performance of the proposed multiclass method. Experimental results are then presented which indicate the performance of the proposed multiclass method.

Application of Terahertz Spectroscopy and Imaging in the Diagnosis of Prostate Cancer

  • Zhang, Ping;Zhong, Shuncong;Zhang, Junxi;Ding, Jian;Liu, Zhenxiang;Huang, Yi;Zhou, Ning;Nsengiyumva, Walter;Zhang, Tianfu
    • Current Optics and Photonics
    • /
    • 제4권1호
    • /
    • pp.31-43
    • /
    • 2020
  • The feasibility of the application of terahertz electromagnetic waves in the diagnosis of prostate cancer was examined. Four samples of incomplete cancerous prostatic paraffin-embedded tissues were examined using terahertz spectral imaging (TPI) system and the results obtained by comparing the absorption coefficient and refractive index of prostate tumor, normal prostate tissue and smooth muscle from one of the paraffin tissue masses examined were reported. Three hundred and sixty cases of absorption coefficients from one of the paraffin tissues examined were used as raw data to classify these three tissues using the Principal Component Analysis (PCA) and Least Squares Support Vector Machine (LS-SVM). An excellent classification with an accuracy of 92.22% in the prediction set was achieved. Using the distribution information of THz reflection signal intensity from sample surface and absorption coefficient of the sample, an attempt was made to use the TPI system to identify the boundaries of the different tissues involved (prostate tumors, normal and smooth muscles). The location of three identified regions in the terahertz images (frequency domain slice absorption coefficient imaging, 1.2 THz) were compared with those obtained from the histopathologic examination. The tissue tumor region had a distinctively visible color and could well be distinguished from other tissue regions in terahertz images. Results indicate that a THz spectroscopy imaging system can be efficiently used in conjunction with the proposed advanced computer-based mathematical analysis method to identify tumor regions in the paraffin tissue mass of prostate cancer.

서브 밴드 CSP기반 FLD 및 PCA를 이용한 동작 상상 EEG 특징 추출 방법 연구 (A Method of Feature Extraction on Motor Imagery EEG Using FLD and PCA Based on Sub-Band CSP)

  • 박상훈;이상국
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1535-1543
    • /
    • 2015
  • 뇌-컴퓨터 인터페이스는 사용자의 뇌전도(Electroencephalogram: EEG)를 획득하여 생각만으로 기계를 제어하거나 신체장애를 가진 사람에게 손 또는 발과 같은 신체를 대신하여 의사 전달 수단으로 사용될 수 있다. 본 논문에서는 동작 상상 EEG를 분류하기 위해 Sub-Band Common Spatial Pattern(SBCSP)를 기반으로 필터 선택을 하지 않는 특징 추출 방법에 대해 연구한다. 4~40Hz의 동작 상상 신호를 4Hz 대역마다 나눈 9개의 서브 밴드에 각각 CSP를 적용한다. 이후 Fisher's Linear Discriminant(FLD)를 사용하여 도출된 값들을 결합한 FLD 점수 벡터에 차원 축소를 위한 Principal Component Analysis(PCA)를 적용하여 클래스 구분을 위한 최적의 평면에 특징을 투영한다. 데이터베이스는 BCI CompetitionIII dataset IVa(2 클래스: 오른손 다리)를 이용하며, 추출된 특징은 Least Squares Support Vector Machine(LS-SVM)의 입력으로 사용된다. 제안된 방법의 성능은 $10{\times}10$ fold cross-validation을 이용하여 분류 정확도로 나타낸다. 본 논문에서 제안하는 방법은 피험자 'aa', 'al', 'av', 'aw', 'ay'에 대하여 각각 $85.29{\pm}0.93%$, $95.43{\pm}0.57%$, $72.57{\pm}2.37%$, $91.82{\pm}1.38%$, $93.50{\pm}0.69%$의 분류 정확도를 보였다.

Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.561-574
    • /
    • 2018
  • In this paper, for efficiently reducing the computational cost of the model updating during the optimization process of damage detection, the structural response is evaluated using properly trained surrogate model. Furthermore, in practice uncertainties in the FE model parameters and modelling errors are inevitable. Hence, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The current work builds a framework for Probability Based Damage Detection (PBDD) of structures based on the best combination of metaheuristic optimization algorithm and surrogate models. To reach this goal, three popular metamodeling techniques including Cascade Feed Forward Neural Network (CFNN), Least Square Support Vector Machines (LS-SVMs) and Kriging are constructed, trained and tested in order to inspect features and faults of each algorithm. Furthermore, three wellknown optimization algorithms including Ideal Gas Molecular Movement (IGMM), Particle Swarm Optimization (PSO) and Bat Algorithm (BA) are utilized and the comparative results are presented accordingly. Furthermore, efficient schemes are implemented on these algorithms to improve their performance in handling problems with a large number of variables. By considering various indices for measuring the accuracy and computational time of PBDD process, the results indicate that combination of LS-SVM surrogate model by IGMM optimization algorithm have better performance in predicting the of damage compared with other methods.

최소제곱 서포트벡터기계를 이용한 시장점유율 자료 분석 (Analysis of market share attraction data using LS-SVM)

  • 박혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.879-886
    • /
    • 2009
  • 본 논문에서는 시장점유율을 추정할 때 최소제곱 서포트벡터기계를 적용하여 보통최소제곱과 최소제곱 서포트벡터기계의 성능을 비교하고자 한다. 최소제곱 서포트벡터기계는 커널 함수를 사용함으로 고차원의 특징 공간에서 선형회귀로 재구성함으로 비선형 회귀문제까지도 해결할 수 있는 장점을 가지고 있다. 그래서 본 논문에서는 비모수 기법인 최소제곱 서포트벡터기계를 이용하여 시장점유율 모형을 추정하고자 한다. 최소제곱 서포트벡터기계를 기반으로 한 모형 추정은 시장점유율 유인모형을 해결하기 위한 좋은 대안이 된다. 최소제곱 서포트벡터기계의 성능을 평가하기 위해 비교 실험에서는 한국 자동차 시장에서 차량 판매량을 이용하여 브랜드별 시장점유율 모형을 추정하였다.

  • PDF

최소제곱 서포터벡터기계 형태의 준지도분류 (Semi-supervised classification with LS-SVM formulation)

  • 석경하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.461-470
    • /
    • 2010
  • 라벨 있는 자료가 분류규칙을 만들 만큼 충분하지 않거나, 라벨 없는 자료가 분류규칙을 만드는데 도움을 줄 수 있는 경우에는 라벨 있는 자료와 라벨 없는 자료를 모두 사용하는 준지도분류가 더 효과적이다. 준지도분류 중 그래프기반 다양체정칙법이 개발되어 최근에 많은 연구가 이루어지고 있다. 본 연구에서는 통계적학습에서 좋은 성능을 보이는 최소제곱 서포터벡터기계를 준지도분류에 적용시키는 방법을 제안한다. 모의실험을 통해 제안된 방법이 라벨 없는 자료를 잘 활용하는 것을 볼 수 있었다.

Empirical evaluations for predicting the damage of FRC wall subjected to close-in explosions

  • Duc-Kien Thai;Thai-Hoan Pham;Duy-Liem Nguyen;Tran Minh Tu;Phan Van Tien
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.65-79
    • /
    • 2023
  • This paper presents a development of empirical evaluations, which can be used to evaluate the damage of fiber-reinforced concrete composites (FRC) wall subjected to close-in blast loads. For this development, a combined application of numerical simulation and machine learning approaches are employed. First, finite element modeling of FRC wall under blast loading is developed and verified using experimental data. Numerical analyses are then carried out to investigate the dynamic behavior of the FRC wall under blast loading. In addition, a data set of 384 samples on the damage of FRC wall due to blast loads is then produced in order to develop machine learning models. Second, three robust machine learning models of Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) are employed to propose empirical evaluations for predicting the damage of FRC wall. The proposed empirical evaluations are very useful for practical evaluation and design of FRC wall subjected to blast loads.

가중 최소제곱 서포트벡터기계의 혼합모형을 이용한 수익률 기간구조 추정 (Estimating the Term Structure of Interest Rates Using Mixture of Weighted Least Squares Support Vector Machines)

  • 노성균;심주용;황창하
    • 응용통계연구
    • /
    • 제21권1호
    • /
    • pp.159-168
    • /
    • 2008
  • 수익률 기간구조(term structure of interest rates, 이하 수익률곡선)는 자료의 성격이 경시적(longitudinal)이므로 만기까지 기간과 시간을 동시에 입력변수로 고려해야만 유용하고 효율적인 함수추정이 가능하다. 고러나 이러한 방법은 다루어야 하는 자료가 대용량이기 때문에 대용량 자료에 적합하고 실행속도가 빠른 추정기법을 개발하는 것이 필요하다. 한편 자료에 내재하는 자기상관성 구조 때문에 과대 적합된 추정 결과를 얻기 쉽다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해서 가중 LS-SVM(least squares support vector machine, 최소제곱 서포트벡터기계)의 혼합모형을 제안한다. 미국 재무부 채권에 대한 사례연구를 통해서 추정 결과가 증권시장 붕괴 같은 이례적 사건의 현상을 잘 반영하고 있음을 확인할 수 있었다.

Prediction of rock slope failure using multiple ML algorithms

  • Bowen Liu;Zhenwei Wang;Sabih Hashim Muhodir;Abed Alanazi;Shtwai Alsubai;Abdullah Alqahtani
    • Geomechanics and Engineering
    • /
    • 제36권5호
    • /
    • pp.489-509
    • /
    • 2024
  • Slope stability analysis and prediction are of critical importance to geotechnical engineers, given the severe consequences associated with slope failure. This research endeavors to forecast the factor of safety (FOS) for slopes through the implementation of six distinct ML techniques, including back propagation neural networks (BPNN), feed-forward neural networks (FFNN), Takagi-Sugeno fuzzy system (TSF), gene expression programming (GEP), and least-square support vector machine (Ls-SVM). 344 slope cases were analyzed, incorporating a variety of geometric and shear strength parameters measured through the PLAXIS software alongside several loss functions to assess the models' performance. The findings demonstrated that all models produced satisfactory results, with BPNN and GEP models proving to be the most precise, achieving an R2 of 0.86 each and MAE and MAPE rates of 0.00012 and 0.00002 and 0.005 and 0.004, respectively. A Pearson correlation and residuals statistical analysis were carried out to examine the importance of each factor in the prediction, revealing that all considered geomechanical features are significantly relevant to slope stability. However, the parameters of friction angle and slope height were found to be the most and least significant, respectively. In addition, to aid in the FOS computation for engineering challenges, a graphical user interface (GUI) for the ML-based techniques was created.

동작 상상 EEG 분류를 위한 필터 뱅크 기반 정규화 공통 공간 패턴 (Filter-Bank Based Regularized Common Spatial Pattern for Classification of Motor Imagery EEG)

  • 박상훈;김하영;이다빛;이상국
    • 정보과학회 논문지
    • /
    • 제44권6호
    • /
    • pp.587-594
    • /
    • 2017
  • 최근, 동작 상상(Motor Imagery) Electroencephalogram(EEG)를 기반으로 한 Brain-Computer Interface(BCI) 시스템은 의학, 공학 등 다양한 분야에서 많은 관심을 받고 있다. Common Spatial Pattern(CSP) 알고리즘은 동작 상상 EEG의 특징을 추출하기 위한 가장 유용한 방법이다. 그러나 CSP 알고리즘은 공분산 행렬에 의존하기 때문에 Small-Sample Setting(SSS) 상황에서 성능에 한계가 있다. 또한 사용하는 주파수 대역에 따라 큰 성능 차이를 보인다. 이러한 문제를 동시에 해결하기 위해, 4-40Hz 대역 EEG 신호를 9개의 필터 뱅크를 이용하여 분할하고 각 밴드에 Regularized CSP(R-CSP)를 적용한다. 이후 Mutual Information-Based Individual Feature(MIBIF) 알고리즘은 R-CSP의 차별적인 특징을 선택하기 위해 사용된다. 본 연구에서는 대뇌 피질의 운동영역 부근 18개 채널을 사용하여 BCI CompetitionIII DatasetIVa의 피험자 다섯 명(aa, al, av, aw 및 ay)에 대해 각각 87.5%, 100%, 63.78%, 82.14% 및 86.11%의 정확도를 도출하였다. 제안된 방법은 CSP, R-CSP 및 FBCSP 방법보다 16.21%, 10.77% 및 3.32%의 평균 분류 정확도 향상이 있었다. 특히, 본 논문에서 제안한 방법은 SSS 상황에서 우수한 성능을 보였다.