Communications for Statistical Applications and Methods
/
제15권3호
/
pp.441-450
/
2008
In this paper we propose a new method for solving multiclass problem with least squares support vector machine(LS-SVM) regression. This method implements one-against-all scheme which is as accurate as any other approach. We also propose cross validation(CV) method to select effectively the optimal values of hyper-parameters which affect the performance of the proposed multiclass method. Experimental results are then presented which indicate the performance of the proposed multiclass method.
The feasibility of the application of terahertz electromagnetic waves in the diagnosis of prostate cancer was examined. Four samples of incomplete cancerous prostatic paraffin-embedded tissues were examined using terahertz spectral imaging (TPI) system and the results obtained by comparing the absorption coefficient and refractive index of prostate tumor, normal prostate tissue and smooth muscle from one of the paraffin tissue masses examined were reported. Three hundred and sixty cases of absorption coefficients from one of the paraffin tissues examined were used as raw data to classify these three tissues using the Principal Component Analysis (PCA) and Least Squares Support Vector Machine (LS-SVM). An excellent classification with an accuracy of 92.22% in the prediction set was achieved. Using the distribution information of THz reflection signal intensity from sample surface and absorption coefficient of the sample, an attempt was made to use the TPI system to identify the boundaries of the different tissues involved (prostate tumors, normal and smooth muscles). The location of three identified regions in the terahertz images (frequency domain slice absorption coefficient imaging, 1.2 THz) were compared with those obtained from the histopathologic examination. The tissue tumor region had a distinctively visible color and could well be distinguished from other tissue regions in terahertz images. Results indicate that a THz spectroscopy imaging system can be efficiently used in conjunction with the proposed advanced computer-based mathematical analysis method to identify tumor regions in the paraffin tissue mass of prostate cancer.
뇌-컴퓨터 인터페이스는 사용자의 뇌전도(Electroencephalogram: EEG)를 획득하여 생각만으로 기계를 제어하거나 신체장애를 가진 사람에게 손 또는 발과 같은 신체를 대신하여 의사 전달 수단으로 사용될 수 있다. 본 논문에서는 동작 상상 EEG를 분류하기 위해 Sub-Band Common Spatial Pattern(SBCSP)를 기반으로 필터 선택을 하지 않는 특징 추출 방법에 대해 연구한다. 4~40Hz의 동작 상상 신호를 4Hz 대역마다 나눈 9개의 서브 밴드에 각각 CSP를 적용한다. 이후 Fisher's Linear Discriminant(FLD)를 사용하여 도출된 값들을 결합한 FLD 점수 벡터에 차원 축소를 위한 Principal Component Analysis(PCA)를 적용하여 클래스 구분을 위한 최적의 평면에 특징을 투영한다. 데이터베이스는 BCI CompetitionIII dataset IVa(2 클래스: 오른손 다리)를 이용하며, 추출된 특징은 Least Squares Support Vector Machine(LS-SVM)의 입력으로 사용된다. 제안된 방법의 성능은 $10{\times}10$ fold cross-validation을 이용하여 분류 정확도로 나타낸다. 본 논문에서 제안하는 방법은 피험자 'aa', 'al', 'av', 'aw', 'ay'에 대하여 각각 $85.29{\pm}0.93%$, $95.43{\pm}0.57%$, $72.57{\pm}2.37%$, $91.82{\pm}1.38%$, $93.50{\pm}0.69%$의 분류 정확도를 보였다.
In this paper, for efficiently reducing the computational cost of the model updating during the optimization process of damage detection, the structural response is evaluated using properly trained surrogate model. Furthermore, in practice uncertainties in the FE model parameters and modelling errors are inevitable. Hence, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The current work builds a framework for Probability Based Damage Detection (PBDD) of structures based on the best combination of metaheuristic optimization algorithm and surrogate models. To reach this goal, three popular metamodeling techniques including Cascade Feed Forward Neural Network (CFNN), Least Square Support Vector Machines (LS-SVMs) and Kriging are constructed, trained and tested in order to inspect features and faults of each algorithm. Furthermore, three wellknown optimization algorithms including Ideal Gas Molecular Movement (IGMM), Particle Swarm Optimization (PSO) and Bat Algorithm (BA) are utilized and the comparative results are presented accordingly. Furthermore, efficient schemes are implemented on these algorithms to improve their performance in handling problems with a large number of variables. By considering various indices for measuring the accuracy and computational time of PBDD process, the results indicate that combination of LS-SVM surrogate model by IGMM optimization algorithm have better performance in predicting the of damage compared with other methods.
Journal of the Korean Data and Information Science Society
/
제20권5호
/
pp.879-886
/
2009
본 논문에서는 시장점유율을 추정할 때 최소제곱 서포트벡터기계를 적용하여 보통최소제곱과 최소제곱 서포트벡터기계의 성능을 비교하고자 한다. 최소제곱 서포트벡터기계는 커널 함수를 사용함으로 고차원의 특징 공간에서 선형회귀로 재구성함으로 비선형 회귀문제까지도 해결할 수 있는 장점을 가지고 있다. 그래서 본 논문에서는 비모수 기법인 최소제곱 서포트벡터기계를 이용하여 시장점유율 모형을 추정하고자 한다. 최소제곱 서포트벡터기계를 기반으로 한 모형 추정은 시장점유율 유인모형을 해결하기 위한 좋은 대안이 된다. 최소제곱 서포트벡터기계의 성능을 평가하기 위해 비교 실험에서는 한국 자동차 시장에서 차량 판매량을 이용하여 브랜드별 시장점유율 모형을 추정하였다.
Journal of the Korean Data and Information Science Society
/
제21권3호
/
pp.461-470
/
2010
라벨 있는 자료가 분류규칙을 만들 만큼 충분하지 않거나, 라벨 없는 자료가 분류규칙을 만드는데 도움을 줄 수 있는 경우에는 라벨 있는 자료와 라벨 없는 자료를 모두 사용하는 준지도분류가 더 효과적이다. 준지도분류 중 그래프기반 다양체정칙법이 개발되어 최근에 많은 연구가 이루어지고 있다. 본 연구에서는 통계적학습에서 좋은 성능을 보이는 최소제곱 서포터벡터기계를 준지도분류에 적용시키는 방법을 제안한다. 모의실험을 통해 제안된 방법이 라벨 없는 자료를 잘 활용하는 것을 볼 수 있었다.
Duc-Kien Thai;Thai-Hoan Pham;Duy-Liem Nguyen;Tran Minh Tu;Phan Van Tien
Steel and Composite Structures
/
제49권1호
/
pp.65-79
/
2023
This paper presents a development of empirical evaluations, which can be used to evaluate the damage of fiber-reinforced concrete composites (FRC) wall subjected to close-in blast loads. For this development, a combined application of numerical simulation and machine learning approaches are employed. First, finite element modeling of FRC wall under blast loading is developed and verified using experimental data. Numerical analyses are then carried out to investigate the dynamic behavior of the FRC wall under blast loading. In addition, a data set of 384 samples on the damage of FRC wall due to blast loads is then produced in order to develop machine learning models. Second, three robust machine learning models of Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) are employed to propose empirical evaluations for predicting the damage of FRC wall. The proposed empirical evaluations are very useful for practical evaluation and design of FRC wall subjected to blast loads.
수익률 기간구조(term structure of interest rates, 이하 수익률곡선)는 자료의 성격이 경시적(longitudinal)이므로 만기까지 기간과 시간을 동시에 입력변수로 고려해야만 유용하고 효율적인 함수추정이 가능하다. 고러나 이러한 방법은 다루어야 하는 자료가 대용량이기 때문에 대용량 자료에 적합하고 실행속도가 빠른 추정기법을 개발하는 것이 필요하다. 한편 자료에 내재하는 자기상관성 구조 때문에 과대 적합된 추정 결과를 얻기 쉽다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해서 가중 LS-SVM(least squares support vector machine, 최소제곱 서포트벡터기계)의 혼합모형을 제안한다. 미국 재무부 채권에 대한 사례연구를 통해서 추정 결과가 증권시장 붕괴 같은 이례적 사건의 현상을 잘 반영하고 있음을 확인할 수 있었다.
Slope stability analysis and prediction are of critical importance to geotechnical engineers, given the severe consequences associated with slope failure. This research endeavors to forecast the factor of safety (FOS) for slopes through the implementation of six distinct ML techniques, including back propagation neural networks (BPNN), feed-forward neural networks (FFNN), Takagi-Sugeno fuzzy system (TSF), gene expression programming (GEP), and least-square support vector machine (Ls-SVM). 344 slope cases were analyzed, incorporating a variety of geometric and shear strength parameters measured through the PLAXIS software alongside several loss functions to assess the models' performance. The findings demonstrated that all models produced satisfactory results, with BPNN and GEP models proving to be the most precise, achieving an R2 of 0.86 each and MAE and MAPE rates of 0.00012 and 0.00002 and 0.005 and 0.004, respectively. A Pearson correlation and residuals statistical analysis were carried out to examine the importance of each factor in the prediction, revealing that all considered geomechanical features are significantly relevant to slope stability. However, the parameters of friction angle and slope height were found to be the most and least significant, respectively. In addition, to aid in the FOS computation for engineering challenges, a graphical user interface (GUI) for the ML-based techniques was created.
최근, 동작 상상(Motor Imagery) Electroencephalogram(EEG)를 기반으로 한 Brain-Computer Interface(BCI) 시스템은 의학, 공학 등 다양한 분야에서 많은 관심을 받고 있다. Common Spatial Pattern(CSP) 알고리즘은 동작 상상 EEG의 특징을 추출하기 위한 가장 유용한 방법이다. 그러나 CSP 알고리즘은 공분산 행렬에 의존하기 때문에 Small-Sample Setting(SSS) 상황에서 성능에 한계가 있다. 또한 사용하는 주파수 대역에 따라 큰 성능 차이를 보인다. 이러한 문제를 동시에 해결하기 위해, 4-40Hz 대역 EEG 신호를 9개의 필터 뱅크를 이용하여 분할하고 각 밴드에 Regularized CSP(R-CSP)를 적용한다. 이후 Mutual Information-Based Individual Feature(MIBIF) 알고리즘은 R-CSP의 차별적인 특징을 선택하기 위해 사용된다. 본 연구에서는 대뇌 피질의 운동영역 부근 18개 채널을 사용하여 BCI CompetitionIII DatasetIVa의 피험자 다섯 명(aa, al, av, aw 및 ay)에 대해 각각 87.5%, 100%, 63.78%, 82.14% 및 86.11%의 정확도를 도출하였다. 제안된 방법은 CSP, R-CSP 및 FBCSP 방법보다 16.21%, 10.77% 및 3.32%의 평균 분류 정확도 향상이 있었다. 특히, 본 논문에서 제안한 방법은 SSS 상황에서 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.