• Title/Summary/Keyword: LQR method

Search Result 131, Processing Time 0.025 seconds

A New Loop Shaping Method for Design of Robust Optimal PID Controller (강인한 최적 PID 제어기 설계를 위한 새로운 루프 형성 기법)

  • 윤성오;서병설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1062-1069
    • /
    • 2003
  • This paper presents a new loop shaping technique for design of robust optimal PID controllers in order to satisfy the performance requirements. PID controller can be designed by selecting the suitable weighting factors Q and R. This technique is developed by pushing all two zeros formed by PID controller closely to a larger pole of the second order plant. As a result, a good loop shaping is achieved in the high frequencies region on the Bode plot. For the robust optimal tuning of PID controller for second order system, a new loop shaping procedure is developed via LQR approach.

Skyhook Control of a Semi-Active ER Damper (반능동 ER댐퍼의 스카이훅 제어)

  • Lee, Yuk-Hyeong;Park, Myeong-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2001
  • In this paper, skyhook control of a semi-active ER(Electro-Rheological) damper is investigated. The strength of the ER damper is controlled by a high voltage power supply. This paper deals with a two-degree-of-freedom suspension using the damper with ERF for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using skyhook and Linear Quadratic Regulator(LQR) optimal control method. Computer simulation and experimental results show that the semi-active suspension with ERF damper has good performances of ride quality.

  • PDF

Capacity design by developed pole placement structural control

  • Amini, Fereidoun;Karami, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.147-168
    • /
    • 2011
  • To ensure safety and long term performance, structural control has rapidly matured over the past decade into a viable means of limiting structural responses to strong winds and earthquakes. Nonlinear response history analysis requires rigorous procedure to compute seismic demands. Therefore the simplified nonlinear analysis procedures are useful to determine performance of the structure. In this investigation, application of improved capacity demand diagram method in the control of structural system is presented for the first time. Developed pole assignment method (DPAM) in structural systems control is introduced. Genetic algorithm (GA) is employed as an optimization tool for minimizing a target function that defines values of coefficient matrices providing the placement of actuators and optimal control forces. The ground acceleration is modified under induced control forces. Due to this, performance of structure based on improved nonlinear demand diagram is selected to threshold of nonlinear behavior of structure. With small energy consumption characteristics, semi-active devices are especially attractive solutions for limiting earthquake effects. To illustrate the efficiency of DPAM, a 30-story steel moment frame structure employing the semi-active control devices is applied. In comparison to the widely used linear quadratic regulation (LQR), the DPAM controller was shown to be just as effective and better in the reduction of structural responses during large earthquakes.

Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator (모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어)

  • Kim, Junsik;Woo, Heejin;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

LQ-servo method for non-minimum phase plants (비최소 위상 플랜트에서 LQ-servo 방법)

  • 서병설;장태우
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.9-16
    • /
    • 1996
  • LQ-servo is a robustness guaranteed multivariable controller design method based on the LQR structure to improve command following with output feedback. in this paper we introduce a weighting factor on the low frequency part of the state weighting matrix in the performance index in order to increase the low frequency gain of loop transfer function matrix T(s) in the loop shaping design method.

  • PDF

Controller design by using pole-sensitivity (극점감도를 이용한 제어기 설계)

  • 임동균;강진식;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.446-450
    • /
    • 1990
  • In this paper, we present a method of analysing perturbed linear system by pole sensitivity defined by the rate of pole movement with respect of perturbation. Pole sensitivity give us not only the rate of pole movement but also the directional information of the pole movement. We present a method of design of a LQR by considering the pole sensitivity and show that the suggested method guarantee the stability robustness of parameter perturbation.

  • PDF

Overshoot design method of LQ-PID controller using convex optimization (블록형 최적화 기법에 의한 LQ-PID제어기의 오버슈트 설계방법)

  • Kim, Dae-Kwang;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.96-99
    • /
    • 2002
  • This paper proposes a method to select the overshoot design parameters of the LQ-PID controller by using convex optimization in order to satisfy the design specifications. The tuning parameters of LQ-PID controller are determinated by the relationships between the design parameter to control both the overshoot and the settling time and the weighting factors Q and R in LQR.

  • PDF

Structural Vibration Control with $H_{\infty}$ Control Algorithm ($H_{\infty}$제어알고리즘을 이용한 구조물의 진동제어)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.93-99
    • /
    • 1998
  • Mathematical model can be obtained by physical law or engineering theory. However it is always incomplete expression of the real system. In active controls to suppress vibration due to earthquake or wind load, modeling errors can often cause the problems of instability and performance degradation. In this paper, robust optimal controller design method using H$\infty$ control theory is developed for the systems which have uncertain natural frequency and design constraints. Numerical results show that the proposed H$\infty$ controller can avoid the performance degradation due to several errors and has better performance than conventional LQR method.

  • PDF

A Study on the Relation between Towing Force of Tow Vessel and Towing Point and Behavior of Towed Ship (예인력과 피예인선의 예인 지점과 거동에 관한 연구)

  • Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.637-642
    • /
    • 2013
  • In this paper, an analysis results of towing force and towing points which are dominating factors to determine the behavior of towed ship are introduced. The towing force and towing points to achive the desired posture and its position of the towed vessel are derived based on simplified dynamics and linearization method. LQR algorithm for posture control is applied to linearized system and numerical simulation is also executed. Force based on COG(cneter of gravity) and gain of controller to achieve desired posture for target vessel are obtained by using Riccati matrix equation and pseudo inverse matrix is applied to analyze the relation between the derived force and its towing point. Based on this analysis method, towing force need to move the towed vessel from its initial position to target position can be calculated. The towing method including towing point and direction is also considered on this method. Finally, the relation between towing force and towing point is confirmed from the analysis and the results can be applied to arrangement of tug boats during salvage works.

Stability of Saturation Controllers for the Active Vibration Control of Linear Structures (선형 구조물의 능동 진동 제어를 위한 포화 제어기의 안정성)

  • Moon, Seok-Jun;Lim, Chae-Wook;Huh, Young-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.93-102
    • /
    • 2006
  • Control input's saturation of active control devices for large structures under large external disturbances are often occurred. It is more difficult to obtain the exact values of mass and stiffness as structures are higher. The modelling errors between mathematical models and real structures must be also included as parameter uncertainties. Therefore, in active vibration control of civil engineering structures like buildings and bridges, the robust saturation controller design method considering both control input's saturation and parameter uncertainties of system is needed. In this paper, stabilities of linear optimal controller LQR, modified bang-bang controller, saturated sliding mode controller, and robust saturation controller among various controllers which have been studied and applied to active vibration control of buildings are investigated. Especially, unstable phenomena of the LQR, the modified bang-bang controller and the saturated sliding mode controller when the control input is saturated or parameter uncertainties exist are presented to show the necessity of the robust saturation controller. The robust stability of the robust saturation controller are shown through a numerical example of a 2DOF linear vibrating system and an experimental test of the two-story structure with an active mass damper (AMD).