• Title/Summary/Keyword: LQR Control

Search Result 259, Processing Time 0.035 seconds

Target Tracking Control of a Quadrotor UAV using Vision Sensor (비전 센서를 이용한 쿼드로터형 무인비행체의 목표 추적 제어)

  • Yoo, Min-Goo;Hong, Sung-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.118-128
    • /
    • 2012
  • The goal of this paper is to design the target tracking controller for a quadrotor micro UAV using a vision sensor. First of all, the mathematical model of the quadrotor was estimated through the Prediction Error Method(PEM) using experimental input/output flight data, and then the estimated model was validated via the comparison with new experimental flight data. Next, the target tracking controller was designed using LQR(Linear Quadratic Regulator) method based on the estimated model. The relative distance between an object and the quadrotor was obtained by a vision sensor, and the altitude was obtained by a ultra sonic sensor. Finally, the performance of the designed target tracking controller was evaluated through flight tests.

Comparative Study on Active Control Algorithms through Weighting Functions (가중함수에 따른 능동제어 알고리듬의 비교 연구)

  • Min, Kyung-Won;Kim, Jin-Koo;Kim, Sung-Choon;Chung, Lan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.173-179
    • /
    • 2001
  • 성능지수는 제어 대상이 되는 구조물의 응답과 제어기의 성능에 관한 가중함수로 구성되어 있다. 따라서 가중함수의 설계에 따라 성능지수가 변화되며 제어 효율이 달라진다. 본 논문에서는 최적 능동제어 알고리듬의 일종인 시간 영역에서의 성능지수를 고려한 LQR기법과 LQG기법 및 주파수 영역에서의 성능지수를 고려한 H₂기법에 대하여 동일한 가중함수를 적용하여 제어 성능인 제어율과 제어력을 비교하는데 목적을 두고 있다. 그러나, LQG기법은 모든 상태 변수를 알아야 하는 LQR기법의 한계를 극복할 수 있으며 LQR기법과 동일 수준의 제어율과 제어력을 보이고 있고 출력 제어라는 장점을 고려하면 현실적인 기법이라고 말할 수 있다. 마지막으로 구조물 응답과 제어기의 주파수 특성을 고려하여 주파수 필터의 가중함수를 설계하는 H₂기법을 분석하였다. H₂기법은 제어력을 저주파수 영역에 집중시킬 수 있기 때문에 구조물 응답을 효과적으로 제어할 수 있는 방법으로 분석되었다.

  • PDF

Control of the Attitude of a Wheeled Inverted Pendulum (차륜형 도립진자의 자세 제어)

  • Lee, Weon-Seob;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.303-308
    • /
    • 1998
  • In this paper a neural network controller called "Feedback-State Learning" for control of the attitude of a wheeled inverted pendulum is presented. For the controller the design of a stable feedback controller is necessary, so the LQR is used for the feedback controller because the LQR has good performance on controlling nonlinear systems. And the neural networks are used for a feed forward controller. The designed controller is applied to the stabilization of a wheeled inverted pendulum. Because of its nonlinear characteristics such as friction and parameter variations in the linearization, the wheeled inverted pendulum is used for demonstration of the effectiveness of the proposed controller.

  • PDF

Control of a Rotary Double Inverted Pendulum using LQR Control Algorithm (LQR 제어 알고리즘을 이용한 원운동형 2축 도립 진자의 제어)

  • Hwang, Eon-Du;Park, Min-Ho;Lee, Sang-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2240-2242
    • /
    • 2001
  • A rotary double inverted pendulum, the nonlinear system has a regulation problem. In this paper, we linearize the nonlinear system at the upright equilibrium position. The linearized system can be expressed in state space. To maintain the upright position, we design a feedback controller using LQR(Linear Quadratic Regulator) algorithm. Then we simulate the system with third-order Adams Bashforth Moulton Method. The simulated result shows that the applied algorithm is effective for the regulation problem.

  • PDF

Position Control of an Inverted Pendulum on an Inclined Railway (경사진 궤도에서 도립진자의 위치제어)

  • Lee, Jun-Beom;Choi, Ho-Joon;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2170-2172
    • /
    • 2003
  • This paper presents the position tracking control of an inverted pendulum on an inclined railway. In general, inclining the railway leads to errors in the pendulum angle even though the pendulum is stabilized, which results in errors in the cart position. To solve this problem, a linear quadratic regulation (LQR) controller with an integrator is used for compensating the resulting error in the cart position. The proposed method is evaluated by comparing LQR controllers with and without an integrator. Experimental results show that the LQR controller with an integrator is better in performance than one without an integrator.

  • PDF

LQR Controller Design for Active Suspensions using Evolution Strategy and Neural Network

  • Cheon, Jong-Min;Park, Young-Kiu;Kim, Sungshin;Kim, Dae-Jun;Lee, Min-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.4-41
    • /
    • 2001
  • In this paper, we propose a LQR(Linear Quadratic Regulator) controller design for the active suspension using two-degree-of-freedom quarter-car model. We can improve the inherent suspension problem, the tradeoff between ride quality and suspension travel by selecting appropriate weights in the LQR-objective function. Because any definite rules for selecting weights do not exist, we replace the designer´s trial and error with the optimization-algorithm, ES(Evolution Strategy). Using the ES, we can find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle´s state variables.

  • PDF

The Effect of the Turning Rate of the Pod Propeller on the Roll Control System of the Cruise Ship (크루즈선의 횡동요 제어시스템에 미치는 포드 각속도의 영향)

  • Lee, Sung-Kyun;Lee, Jae-Hoon;Rhee, Key-Pyo;Choi, Jin-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.14-25
    • /
    • 2012
  • Recently, the application and installation of the pod propeller to the cruise ship is dramatically increased. It is because pod propulsion system allows a lot of flexibility in design of the internal arrangement of a ship. To reflect this trend, many researches have conducted to use the pod propeller for the roll stabilization of a ship. In the paper, a roll stabilization controller is designed by using fins and pod propellers as the control actuators for cruise ships. Two kinds of control algorithms are adopted for the roll control system; LQR (Linear Quadratic Regulator) algorithm and frequency-weighted LQR algorithm. Through the numerical simulation, the effect of the turning rate of the pod propeller on the roll control system is analyzed. Analysis of the simulation results indicated that the turning rate of the pod propellers is one of the important parameters which give the significant effects on the roll stabilization.

Adaptive control of rotationally non-linear asymmetric structures under seismic loads

  • Amini, Fereidoun;Rezazadeh, Hassan;Afshar, Majid Amin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.721-730
    • /
    • 2018
  • This paper aims to inspect the effectiveness of the Simple Adaptive Control Method (SACM) to control the response of asymmetric buildings with rotationally non-linear behavior under seismic loads. SACM is a direct control method and was previously used to improve the performance of linear and non-linear structures. In most of these studies, the modeled structures were two-dimensional shear buildings. In reality, the building plans might be asymmetric, which cause the buildings to experience torsional motions under earthquake excitation. In this study, SACM is used to improve the performance of asymmetric buildings, and unlike conventional linear models, the non-linear inertial coupling terms are considered in the equations of motion. SACM performance is compared with the Linear Quadratic Regulator (LQR) algorithm. Moreover, the LQR algorithm is modified, so that it is appropriate for rotationally non-linear buildings. Active tuned mass dampers are used to improve the performance of the modeled buildings. The results show that SACM is successful in reducing the response of asymmetric buildings with rotationally non-linear behavior under earthquake excitation. Furthermore, the results of the SACM were very close to those of the LQR algorithm.

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

Determining the Weighting Matrices of Optimal Controllers considering Structural Energy (구조물의 에너지를 고려한 최적제어기의 가중행렬 결정)

  • 민경원;이영철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.475-482
    • /
    • 2002
  • This paper provides the systematic procedure to determine the weighting matrices of optimal controllers considering structural energy. Optimal controllers consist of LQR and ILQR. The weighting matrices are needed first in the conventional optimal control design strategy. However, they are in general dependent on the experienced knowledge of controll designers. Applying the Lyapunov function to the total structural energy and using the contrition that its derivative is negative, we can determine the weighting matrices without difficulty. It is proven that the control efficiency is achieved well for LQR and ILQR.

  • PDF