• Title/Summary/Keyword: LQG/LTR Control

Search Result 95, Processing Time 0.026 seconds

Bond Graph Modeling and LQG/LTR Controller Design of Magnetically Levitation Systems (자기부상 시스템의 본드선도 모델링 및 LQG/LTR 제어기 설계)

  • 김종식;박전수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1620-1634
    • /
    • 1991
  • 본 연구에서는 전기/자기 및 기계적 요소들이 복합되어 이루어진 자기부상 시 스템의 설현을 위한 기초단계로서 제어동역학(controlled dynamics) 측면에 입각한 모 델식을 본드선도 기법을 이용하여 보다 조직적으로 유도한다. 우선, 자속흐름 확장 및 자속 유출량을 고려하여 부상 시스템을 모델링하고 차량/레일 및 2차 현가(second ary suspension)장치를 포함한 자기부상 시스템을 모델링한다. 다음, 지지 및 안내 방향의 동역학을 동시에 고려한 2차원 자기부상 시스템을 본드선도의 다접점 필드(mu- ltiport field) 개념을 이용하여 모델링한다. 끝으로, 본드선도 기법으로 모델링된 2차원 자기부상 시스템의 안정도와 성능을 향상시키기 위하여 LOG/LTR(linear quadra- tic Gaussian control with loop transfer recovery) 제어시스템을 설계한다. LQG/ LTR 제어방법은 Doyle과 Stein에 의해 인성(stability-robustness) 문제와 주파수역 성능을 설계시에 직접 고려할 수 있는 강력한 선형 다변수 제어시스템 설곕방법으로 현재 널리 사용되고 있다.

LQG/LTR Control of Hydraulic Positioning System with Dead-zone (사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어)

  • Kim, In-Soo;Kim, Yeung-Shik;Kim, Ki-Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.729-735
    • /
    • 2012
  • A LQG/LTR(linear quadratic Gaussian/loop transfer recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

Hovering Flight Control for a Model Helicopter using the Minimal-Order LQG/LTR Technique (Minimal Order LQG/LTR 기법에 의한 모형헬리콥터의 정지비행 자세제어)

  • Yang, J.S.;Han, K.H.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.457-459
    • /
    • 1998
  • This paper presents a 3-DOF hovering flight controller for a model helicopter using the minimal order LQG/LTR technique. A model helicopter is an unstable multi-input multi-output nonlinear system strongly exposed to disturbances, so a robust multi-variable control theory should be applied to control it. The minimal order LQG/LTR technique which uses a reduced-order observer in the LTR procedure is used to design the controller. Performances for the 3-DOF hovering flight controller are evaluated through computer simulations.

  • PDF

Transfer Function Derivation and LQG/LTR Speed Ratio Control for a Metal Belt CVT (금속벨트 CVT의 전달함수 도출과 변속비 LQG/LTR 제어)

  • 김종준;송한림;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • In this paper, a transfer function was obtained for a PWM high speed solenoid valve controlled metal belt CVT system. The transfer function was defined as the ratio of speed ratio to PWM duty ratio and derived in time domain by linear regression analysis from the experimental results. The transfer function obtained showed different dynamic characteristics for the up and down shift. Also, LQG/LTR controller was designed for the CVT system using the transfer function. It is seen from the experimental results that LQG/LTR control showed good performance for the speed ratio tracking and disturbance rejection. The phase difference and relatively slow response are considered due to the inaccuracy os the transfer functions, which resulted from the inherent nonlinearities of the transmission characteristics of the metal belt CVT.

  • PDF

A study on a new method of LQG/LTR for nonminimum phase plant by using zero structure (영점구조를 이용한 비 최소위상 플랜트의 새로운 LQG/LTR 방법연구)

  • 서병설;강진식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.208-212
    • /
    • 1991
  • LQG/LTR method cannot applied to nonminimum phase plant. In this paper, we present a new approximation method which guaratee the approximation error equal to zero and exact loop transfer recovery. Zero structure of plant and approximated plant are considered in approximation procedure. It is shown that the properties of plant and approximated plant at pole and zero frequency response are exactly same. It is shown by example that the suggested method can avoide the NMP plant constraint arised in designing LQG/LTR.

  • PDF

비선형 다변수 발사대의 LQG/LTR 제어기 설계

  • 김종식;한성익;김용목;남세규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.133-142
    • /
    • 1992
  • A kineamatic nonlinear multivariable laundher is modeled of which the azimoth and elevation axes are drived simultaneously and SISO and MIMO LQG/LTR controllers are designed and evaluated for this system. Also, the suitable command input function is suggested for the desired command following performance and the LQG/LTR control system with disturbances and load variation is evaluated for the entire operating range by computer simulation. It is found that the linear SISO LQG/LTR controller can be used for the kinematic nonlinear multivariable launder in the entire operating range and is effective for disturbance rejection and load variation.

Dynamic Modeling and Design LQG/LTR Controller for the Flexible Satellite Structure (인공위성의 유연모드 구조물에 대한 동력학 모델링 및 LQG/LTR 제어기 설계)

  • 오경륜;채장수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.5-5
    • /
    • 2000
  • Some of Spacecraft's structures are flexible so that a certain expected disturbance can easily excite a low frequency vibration on these structures, having very low natural damping. Such vibration will degrade the performance of the system, which should to be kept in a specific shape or attitude against the undesired vibration, In this paper, LQG/LTR controller is developed using an additional dynamic model to increase the performance of the frequency responses at low frequency area,

  • PDF

LQG/LTR Control of Hydraulic Positioning System with Dead-zone (사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어)

  • Kim, Ki-Bum;Kim, Yeung-Shik;Kim, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.614-619
    • /
    • 2012
  • A LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

  • PDF

Vibration Contol of Automotive Suspension System using the LQG/LTR Control Methodology (LQG/LTR제어기법을 이용한 자동차 서스펜션 시스템의 진동제어)

  • Ahn, Jeong-Keun;Song, Chang-Hun;Yoo, Sam-Hyeon;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.646-653
    • /
    • 2001
  • LQG/LTR Control Methology is recently used for the analysis of multi-variable control in frequency domain. Target filter loop is designed by the demanding requirements such as cross-over frequency, disturbance rejection in low frequency domain, zero steady-state error, identification of maximum and minimum singular values and sensor noise rejection in high frequency domain. Loop transfer recovery is accomplished by solving the cheap control and then simulation close to the target filter loop. In this study, LQG/LTR Control Methodology is applied to the seat suspension system. It is found that this technique is very effective to control the system and improve the ride quality of human body.

  • PDF

Quasi-LQG/$H_{infty}$/LTR Control for a Nonlinear Servo System with Coulomb Friction and Dead-zone

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.24-34
    • /
    • 2000
  • In this paper we propose a controller design method, called Quasi-LQG/$H_{\infty}$/LTR for nonlinear servo systems with hard nonlinearities such as Coulomb friction, dead-zone. Introducing the RIDF method to model Coulomb friction and dead-zone, the statistically linearized system is built. Then, we consider $H_{\infty}$ performance constraint for the optimization of statistically linearized systems, by replacing a covariance Lyapunov equation into a modified Riccati equation of which solution leads to an upper bound of the LQG performance. As a result, the nonlinear correction term is included in coupled Riccati equation, which is generally very difficult to thave a numerical solution. To solve this problem, we use the modified loop shaping technique and show some analytic proofs on LTR condition. Finally, the Quasi-LQG/$H_{\infty}$/LTR controller for a nonlinear system is synthesized by inverse random input describing function techniques (ITIDF). It is shown that the proposed design method has a better performance robustness to the hard nonlinearity than LQG/$H_{\infty}$/LTR method via simulations and experiments for the timing-belt driving servo system that contains the Coulomb friction and dead-zone.

  • PDF