• 제목/요약/키워드: LQG/LTR제어

검색결과 93건 처리시간 0.027초

자동변속장치의 간접식 과도토오크 제어기 설계에 관한 연구 (A Study on the Design of an Indirect Shift Transient Torque Controller for an Automatic Power Transmission System)

  • 정헌술;이교일
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.110-120
    • /
    • 1994
  • Due to the increasing demands in comfortable drivability, most motor companies are developing their own unique shift controller to suppress the shift shock induced by gear change. For a typical automatic transmission system, the dynamic constraints of friction clutch was clarified for efficient program development and major factors effecting the shift transient was confirmed by simulation study. The MIMO LQG/LTR controller was designed to control the turbine and corresponding gear speed. By establishing the control strategy recalling transient response during shift the speed controller mentioned above was used as an indirect torque controller. Consequently a new concept for a systematic design method of shift controller applicable to wide-varying systems was suggested which is time efficient and cost efficient saving a lot of experimental study.

  • PDF

차량 능동 현가장치의 성능 향상을 위한 복합제어기 설게 (Composite Control of Active Suspension System)

  • 한기봉;이시복
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.74-81
    • /
    • 1995
  • In this paper, a composite controller cosisted of bandpass feedback controller and LQG/LTR controller is applied to a quarter-car model moving on a randomly profiled road. The LQG/LTR controller is used to achieve a design transfer toop. A bandpass feedback controller is adopted to eliminate the response due to the disturbance, which generally can not be measured, confined within an interested frequence range. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of the composite control system is compared with that of an LQG/LTR control system.

  • PDF

인공위성의 3축 모델링과 진동억제를 포함한 소각선회 (3-Axis Modeling and Small Angle Maneuver Including Vibration Suppression for a Satellite)

  • 이대우;조겸래
    • 한국항행학회논문지
    • /
    • 제4권2호
    • /
    • pp.103-113
    • /
    • 2000
  • 유연체 부착물을 갖는 인공위성의 수학적 모델링에 관한 방법은 몇 가지들이 있다. 본 논문에서는 FEM에 비해 차수가 낮아 계산시간을 줄일 수 있는 근사화 방법중 하나인 추측모드법을 사용한 하이브리드 라그랑지 방정식을 유도하였다. 이것들은 각속도에 관한 세개의 식들과 유연변위에 관한 두개의 식들로 이루어지며, 위성 본체와 태양전지판의 상호작용을 표현한다. 자세제어에 있어서, 제어법칙은 제어입력뿐만 아니라 진동억제를 포함한 성능지수를 최소화하도록 설계하였다. 이 목적을 위해 본 논문은 LQG와 LQG/LTR 제어기를 사용하였고, 결과로는 진동억제를 고려한 소각선회 성능을 보여준다. 특히, 본 논문에서는 특이시스템을 특이값 분리에 의한 비특이시스템 가정법을 통한 LQG/LTR 설계를 보여준다.

  • PDF

반도체 테스트 핸들러의 온도제어 시스템 개발 II - 제어기 설계 (Development of Temperature Control System for Semiconductor Test Handler II - Controller Design)

  • 김재용;강태삼;이호준;선기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.77-80
    • /
    • 1997
  • In this paper presented is a temperature controller for a semiconductor test handler. Using ARMAX model and least square method, the chamber model for the design of a controller is identified through experiment. With the identified model an LQG/LTR controller is designed. Experiment with a real test handler demonstrated good performance in that its overshoot is small and response time is fast.

  • PDF

LQG/LTR 기법을 이용한 이송자벌레 변위의 정밀 제어 (Precise Control of Inchworm Displacement Using the LQG/LTR Technique)

  • 전윤한;황윤식;박흥석;김인수
    • 한국생산제조학회지
    • /
    • 제24권4호
    • /
    • pp.414-420
    • /
    • 2015
  • In this study, the linear quadratic Guassian loop transfer recovery (LQG/LTR) control technique was combined with an integrator and applied to an inchworm having piezoelectric actuators for precise motion tracking. The piezoelectric actuator showed nonlinear response characteristics, including hysteresis, due to its ferroelectric characteristics and the residual displacement phenomenon. This paper proposes a feedback control scheme using the LQG/LTR controller with an integrator to improve the ability to track the response to complex input signals and to suppress the phenomenon of hysteresis and residual vibration. Experimental results show that the developed feedback control system for an inchworm can track the various motion contours quickly without residual vibration or overshoot.

DSP를 이용한 비선형 타이밍 벨트 구동시스템의 QLQG/LTR 제어 (QLQG/LTR Control of the Nonlinear Timing-Belt Driving Systme Using DSP)

  • 한성익;방두열
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.40-47
    • /
    • 2001
  • In this pater, the QLQG/LTR control method is applied for the position control of the nonlinear timing belt driving sys-tem. Parameters fo the plant are identified by genetic algorithm and nonlinear elements, such as Coulomb friction and dead-zone, and quasi-linearized by RIDE method. Comparing with the LQG/LTR contro. the QLQG/LTR has similar structures of the LQG/LTR, but this method can consider nonlinear effects in designing the controller. Thus, the QLQG/LTR control system is robust to hard nonlinearities such as Coulomb friction, dead-zone, etc. Forma given hard non-linear system through experiments, it is shown that the tracking performance of the QLQG/LTR control system can be very improved that the LQF/LTR control system.

  • PDF

압전소자를 이용한 정밀 스테이지의 운동제어 (Motion Control of the Precise Stage using Piezoelectric Actuator)

  • 김인수;김영식;황윤식
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.102-108
    • /
    • 2011
  • LQG/LTR control scheme is applied to the two axes stage using piezoelectric actuator for tracking reference input and suppressing hysteresis effect in this paper. The plant is combined with an integrator to improve the tracking ability. LQG/LTR controller is designed by making desirable target filter loop remove all poles except for an integrator included in new design plant model and loop transfer recovery. Decoupler in the shape of FIR filter is added to remove the coupling effect between the two axes motion and so feedback control loop is designed independently for the each axis motion.

The Experiment of the Robust Multi-Variable Controller and the LQG/LTR Controller for the Stewart Platform

  • Joon, Heo-Seong;Woo, Ko-Dong;Chul, Han-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.147.4-147
    • /
    • 2001
  • This work presents the robust controller and the LQG/LTR controller for the stewart platform. To simplify the dynamics we combine equation of the stewart platform and linearized one of hydraulic actuators not considered condensability of the fluid. Through the connection of two dynamic equations we can omit force feedback process of actuators and design controllers for the whole system. We applied two controllers on the stewart platform and show the adequacy controllers through the result of simulation and experiment.

  • PDF

조준경 안정화 시스템의 설계 및 특성분석 (Gunner primary sight stabilization system design and performance analysis)

  • 김용관;백운보;김종화;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.327-332
    • /
    • 1990
  • Gunner primary sight stabilization system is a fully integrated sensor package designed to provide the stabilized Line-of-Sight. In this study, to improve disturbance rejection capabilities, two types of compensator (LQG/LTR, Lead-Lag) were designed and then stabilization performances were compared under severe off-road environment. Simulation results shows that the stabilization performances using LQG/LTR methodology is better than Lead-Lag methodology in spite of dynamic uncertainties.

  • PDF

Receding horizon LQG controller with FIR filter

  • Yoo, Kyung-Sang;Shim, Jae-Hoon;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.193-196
    • /
    • 1992
  • When there exist parameter uncertainty, modelling errors and nonminimum phase zeros in control object system. the stability robustness of conventional LQG and LOG/LTR methods are not satisfactory[2, 8]. Since these methods are performed on the infinite horizon, it is very hard to establish exact design parameters and thus they have lots of problems to be applied to real systems, So in this paper we propose RHLQG/FIRF optimal controller which has robust stability against parameter uncertainty, nonminimum phase zeros and modelling errors. This method uses only the information around at present and therefore shows good performance even when we do not know exact design parameters. We here compare LQG and LQG/LTR method with RHLQG/FIRF controller and exemplify that RHLQG/FIRF controller has better robust stability performance via simulations.

  • PDF