• 제목/요약/키워드: LPS-induced inflammation

검색결과 952건 처리시간 0.027초

The Lipopolysaccharide from Porphyromonas gingivalis Induces Vascular Permeability

  • Kim, Su-Ryun;Jeong, Seong-Kyoon;Kim, Woo-Sik;Jeon, Hwa-Jin;Park, Hyun-Joo;Kim, Mi-Kyoung;Jang, Hye-Ock;Yun, Il;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • International Journal of Oral Biology
    • /
    • 제36권1호
    • /
    • pp.23-29
    • /
    • 2011
  • Porphyromonas gingivalis, one of the major periodontal pathogens, is implicated in the initiation and progression of periodontal disease. The initial stages of periodontal inflammation are accompanied by vascular hyperpermeability. In our present study, we report that the P. gingivalis lipopolysaccharide (LPS) increases the mRNA expression of interleukin-8 (IL-8), a major inducer of vascular permeability, in vascular endothelial cells. P. gingivalis LPS also stimulated the induction of IL-8 secretion in endothelial cells. The P. gingivalis LPS-induced expression of IL-8 was primarily modulated by nuclear factor-${\kappa}$B(NF-${\kappa}$B). P. gingivalis LPS significantly enhanced the vascular permeability both in vitro and in vivo, and a blockade of the IL-8 receptor decreased the P. gingivalis LPS-induced vascular permeability. Taken together, these results suggest that P. gingivalis LPS increases vascular permeability through the NF-${\kappa}$B-dependent production of IL-8 in vascular endothelial cells.

사상 체질 처방의 항염증 효능 비교 연구 (Anti-inflammatory Activities of Herbal Formulas for Sasang Constitutional Medicine)

  • 이진아;하혜경;이호영;정다영;이준경;황대선;신현규
    • 사상체질의학회지
    • /
    • 제22권4호
    • /
    • pp.56-64
    • /
    • 2010
  • 1. Objectives 4 herbal formulas (Yanggyeoksanhwa-tang, Yeoldahanso-tang, Cheongsimyeonja-tang and Taeeumjowi-tang) were applied to investigate the anti-inflammatory activities. In many studies, plant-derived anti-inflammatory efficacies have been investigate for their potential inhibitory effects on lipopolysaccharide (LPS)-stimulated macrophages. This study was performed to examine the anti-inflammatory activities of 4 herbal formulas on LPS-stimulated RAW 264.7 cells. 2. Methods The productions of nitric oxide (NO), prostaglandin (PG)$E_2$, interleukin(IL)-6 and tumor necrosis factor (TNF)-${\alpha}$ were examined in the presence of the 4 herbal formulas in RAW 264.7 cells. The cells were incubated with LPS 1 ${\mu}g/mL$ and 4 herbal formulas for 18 hrs. The anti-inflammatory activity of 4 herbal formulas were investigate by carrageenin-induced paw edema in rats. The paw volume was measured at 2 and 4 hrs following carrageenininduced paw edema in rats. 3. Results Yanggyeoksanhwa-tang and Cheongsimyeonja-tang showed inhibitory effect on $PGE_2$ production in LPS-stimulated RAW 264.7 cells and a reduction in carrageenin-induced paw edema on rats. Yanggyeoksanhwa-tang showed inhibitory effect on IL-6 in LPS-stimulated RAW 264.7 cells. 4 herbal formulas not affect on NO and TNF-${\alpha}$ inhibition in LPS-stimulated RAW 264.7 cells. 4. Conclusions These results suggested that Yanggyeoksanhwa-tang and Cheongsimyeonja-tang have anti-inflammatory activity.

RAW 264.7 대식세포에서 유산균으로 발효한 다시마와 톳의 항염증 효과 (Anti-inflammatory Effects of Fermented Laminaria japonica and Hizikia fusiforme Water Extracts with Probiotics in LPS-stimulated RAW264.7 Macrophage Cell Line)

  • 황연지;채인숙;이윤경
    • 동아시아식생활학회지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2017
  • This study was conducted to investigate alterations of seaweed composition upon Lactobacillus rhamnosus GG (LGG) fermentation as well as potential anti-inflammatory effects and mechanism (s) of water extracts and fermented water extracts of Laminaria japonica (LJ) and Hizikia fusiforme (HF) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Total polyphenol, total sugar, and reducing sugar contents were measured in LJ and HF water extracts before and after fermentation by LGG. Alterations of inflammatory cytokine levels in cell culture media were measured by ELISA, and levels of phosphorylation of c-jun NH2-terminalkinase (JNK) and extra cellular signal regulated kinase (ERK) were examined by Western blot analysis. LGG fermentation of LJ and HF altered total polyphenol and sugar contents in water extracts of LJ and HF. LPS-induced production of pro-inflammatory cytokines such as IL-6 and $TNF-{\alpha}$ was significantly reduced by HF-f compared to control in RAW264.7 cells. Consistent with reduction of anti-inflammatory cytokine, interleukin (IL)-6, and tumor necrosis factor $(TNF)-{\alpha}$ levels by HF-f, HF-f also significantly reduced phosphorylation of ERK and JNK in LPS-stimulated RAW264.7 cells. In addition, LJ-f and HF also significantly reduced phosphorylation of JNK and ERK induced by LPS in RAW264.7 cells. Overall, our result suggests that HF-f among the four tested seaweed extracts is the most potent anti-inflammatory agent, and its mechanism of action is partially mediated by reduction of JNK and ERK phosphorylation as well as IL-6 and $TNF-{\alpha}$ production in LPS-stimulated RAW264.7 cells.

LPS로 유도한 마우스의 급성신경염증에 대한 톱니모자반(Sargassum serratifolium) 추출물의 효과 (Effect of a Sargassum serratifolium Extract on Neuroinflammation Induced by Lipopolysaccharides in Mice)

  • 최민우;김형락;이형곤;김재일
    • 한국수산과학회지
    • /
    • 제52권1호
    • /
    • pp.81-86
    • /
    • 2019
  • The common hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD), is the presence of chronic neuroinflammation, which contributes to the loss of neuronal structure and function. This study investigated the effects of an ethanolic extract of Sargassum serratifolium (SSE) in a lipopolysaccharides (LPS)-induced murine neuroinflammation model. Mice were administered SSE (100 mg/kg body weight) or vehicle for 5 days by oral gavage, and then treated with LPS or saline by intraperitoneal injection. Thereafter, the brain tissues were collected, and the expression of pro-inflammatory cytokines was analyzed by quantitative real-time RT-PCR. There was a marked increase in the spleen weight index in the LPS-treated groups, which indicated the induction of acute systemic inflammation. Based on significant increases in the levels of IL-1 and IL-6 expression, the induction of neuroinflammation was also evident in the cortex and hippocampus of the LPS-treated groups. The overall expression of IL-1 and IL-6 was decreased slightly by SSE administration, compared with the LPS group, and a marked change in IL-1 was observed in the cortex of the SSE-treated (SSE/LPS) group. These results suggest that SSE has potential as an anti-neuroinflammatory nutraceutical.

지질다당류로 유발한 염증성 뇌손상 동물모델에 대한 황금작약탕의 억제효과 연구 (Anti-neuroinflammatory Effects of Hwanggeumjakyak-tang on Lipopolysaccharide-induced Brain Injury Model in vivo and in vitro)

  • 김종규;임지성;안성후;송용선
    • 한방재활의학과학회지
    • /
    • 제31권4호
    • /
    • pp.1-11
    • /
    • 2021
  • Objectives Hwanggeumjakyak-tang (HJT) has traditionally been used to treat gastrointestinal inflammatory diseases; however, its protective effects against neuronal inflammation are still undiscovered. Methods We investigated the anti-neuroinflammatory effects of HJT water extract on lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells. BV2 cells were treated with LPS (1 ㎍/mL) 1 hour prior to the addition of HJT. We measured cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and nitrite production using the Griess assay. We performed a reverse transcription-polymerase chain reaction assay to measure messenger RNA expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Western blot analysis was performed to determine protein expression of mitogen-activated protein kinases (MAPKs) and inhibitor of nuclear factor kappa B (NF-κB)α. Results HJT inhibited excessive nitrite release in LPS-stimulated BV2 cells and also significantly inhibited inflammatory cytokines such as IL-1β, IL-6, and TNF-α in LPS-stimulated BV2 cells. Moreover, HJT significantly suppressed LPS-induced MAPK and NF-κB activation and inhibited the elevation of IL-1β, IL-6, and TNF-α in the brain of LPS-injected mice. Conclusions Our study highlights the anti-neuroinflammatory effects of HJT via MAPK and NF-κB deactivation.

RAW 264.7 세포에서 왕지네 추출물의 항염 활성 (Anti-inflammatory activities of Scolopendra subspinipes mutilans in RAW 264.7 cells)

  • 박재현;이선령
    • Journal of Nutrition and Health
    • /
    • 제51권4호
    • /
    • pp.323-329
    • /
    • 2018
  • 만성 염증은 현대사회에서 다양한 질병을 유발하는 주요 원인으로 작용하기 때문에 항염증 활성을 가진 소재의 연구는 염증 관련 질병의 예방과 치료에 있어서 중요하다. 본 연구에서는 LPS에 의해 염증을 유도한 RAW 264.7 세포에서 제주왕지네 (Scolopendra subspinipes mutilans) 에탄올 추출물의 염증 조절 기전을 확인하여 항염증 소재로서의 가능성을 조사하였다. LPS에 의해 증가된 NO 생성과 iNOS 발현은 왕지네 추출물에 의해 감소되었고 pro-inflammatory cytokine으로 알려진 $IL-1{\beta}$, IL-6의 발현에서도 유사한 결과를 보였다. 왕지네 추출물은 LPS에 의해 유도된 $NF-{\kappa}B$의 핵으로의 전이와 $I{\kappa}B$의 분해를 동시에 억제하였고 $NF-{\kappa}B$ inhibitor의 처리는 NO 생성과 iNOS 발현을 더욱 억제하였다. 이상의 결과는 왕지네 추출물이 $NF-{\kappa}B$ 활성 조절을 통해 염증 반응의 지표로 사용되는 NO 생성 및 pro-inflammatory cytokine의 발현을 효과적으로 억제하여 항염 활성을 가진 소재로서의 가능성을 보여주는 것으로 염증에 의해 유발되는 다양한 질병을 효율적으로 제어하는 소재를 개발하는데 있어서 주요한 정보를 제공할 것으로 생각된다.

바우미 상황버섯 추출물의 항염증 효과에 관한 연구 (Characterization of Anti-inflammation Effect of Aqueous Extracts from Phellinus baumii)

  • 김혜민;이동희
    • 한국균학회지
    • /
    • 제38권2호
    • /
    • pp.179-183
    • /
    • 2010
  • 본 연구에서는 바우미 상황버섯의 열수 추출물의 항염증 기능에 관한 연구를 수행하였다. 대식세포주인 RAW264.7을 lipopolyssacharide (LPS)로 활성화 시킨 후, 바우미 상황버섯에서 복수의 조건에서 추출한 추출물을 처리하여 면역 및 염증 발생 경로의 활성도를 측정하여 바우미 상황버섯의 면역증강기능 및 항염증기능을 검증하였다. RAW264.7을 LPS로 처리하였을 때 전형적인 소포체 스트레스를 수반한 염증 반응이 시현되었다. 전형적인 마커인 Grp78, Grp94 및 CHOP의 과발현을 시현하였고, 인터루킨 6 (IL-6)과 염증발현의 표시인자인 nitric oxide(NO) 발현을 증진한 것으로 나타났다. 위와 같이 처리된 세포에 바우미 상황버섯의 추출물을 처리하였을 때, 전반적으로 소포체 스트레스는 경감된 것으로 나타났으며, 특히 염증유발의 신호인자인 NO의 발생량과 이를 생성하는 효소인 iNOS의 발현량이 현격하게 감소한 것으로 나타났다. 이를 종합적으로 분석하면 바우미 상황버섯의 추출물은 유도된 소포체스트레스를 경감하는 효능을 보임과 동시에 항염증의 기능을 보이는 것으로 판단된다.

황련 클로로포름 분획물의 뇌신경소교세포로부터 염증매개물질 생성억제 효능 연구 (Anti-inflammatory effect of chloroform fraction of Coptidis rhizoma on the production of inflammatory mediators from LPS-stimulated BV2 microglial cells)

  • 박용기;이경열
    • 대한본초학회지
    • /
    • 제22권4호
    • /
    • pp.109-116
    • /
    • 2007
  • Objectives : In the present study, we investigated anti-inflammatory effects of chloroform fraction of Coptidis rhizoma (CR-C) on the production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines, tumor necrosis factor-alpha (TNF-${\alpha}$) and interleukin-1beta (IL-1${\beta}$) in LPS-stimulated BV2 microglial cells. Methods : Copriditis rhizoma was extracted with 80% methanol, and then extracted with chloroform. BV2 cells were pre-treated with CR-C, and stimulated with LPS. The cytotoxicity was determined by MTT assay. The production of NO and cytokines was measured by Griess assay and ELISA. The mRNA expression of inducible nirtic oxide synthase (iNOS) and cytokines were determined by RT-PCR. Results : CR-C significantly inhibited the production of NO. TNF-${\alpha}$ and IL-1${\beta}$ in a dose-dependent manner in LPS-stimulated BV2 cells. In addition, CR-C suppressed the mRNA expressions of iNOS and inflammatory cytokines induced by LPS stimulation. These results indicate that CR-C was involved in anti-inflammatory effects in activated microglia. Conclusion : The present study suggests that chloroform extract of Coptidis rhizoma can be useful as a potential anti-inflammatory agent for treatment of various neurodegenerative diseases.

  • PDF

Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • 제8권5호
    • /
    • pp.516-520
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Carnosic acid (CA), found in rosemary (Rosemarinus officinalis) leaves, is known to exhibit anti-obesity and anti-inflammatory activities. However, whether its anti-inflammatory potency can contribute to the amelioration of obesity has not been elucidated. The aim of the current study was to investigate the effect of CA on Toll-like receptor 4 (TLR4) pathways in the presence of lipopolysaccharide (LPS) in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with CA ($0-20{\mu}M$) for 1 h, followed by treatment with LPS for 30 min; mRNA expression of adipokines and protein expression of TLR4-related molecules were then measured. RESULTS: LPS-stimulated 3T3-L1 adipocytes showed elevated mRNA expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin-6, and monocyte chemoattractant protein-1, and CA significantly inhibited the expression of these adipokine genes. LPS-induced up regulation of TLR4, myeloid differentiation factor 88, TNF receptor-associated factor 6, and nuclear factor-${\kappa}B$, as well as phosphorylated extracellular receptor-activated kinase were also suppressed by pre-treatment of 3T3-L1 adipocytes with CA. CONCLUSIONS: Results of this study suggest that CA directly inhibits TLR4-MyD88-dependent signaling pathways and decreases the inflammatory response in adipocytes.

PEP-1-GLRX1 protein exhibits anti-inflammatory effects by inhibiting the activation of MAPK and NF-κB pathways in Raw 264.7 cells

  • Shin, Min Jea;Kim, Dae Won;Choi, Yeon Joo;Cha, Hyun Ju;Lee, Sung Ho;Lee, Sunghou;Park, Jinseu;Han, Kyu Hyung;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.106-111
    • /
    • 2020
  • Glutaredoxin 1 (GLRX1) has been recognized as an important regulator of redox signaling. Although GLRX1 plays an essential role in cell survival as an antioxidant protein, the function of GLRX1 protein in inflammatory response is still under investigation. Therefore, we wanted to know whether transduced PEP-1-GLRX1 protein inhibits lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. In LPS-exposed Raw 264.7 cells, PEP-1-GLRX1 inhibited cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), activation of mitogen activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) expression levels. In a TPA-induced mouse-ear edema model, topically applied PEP-1-GLRX1 transduced into ear tissues and significantly ameliorated ear edema. Our data reveal that PEP-1-GLRX1 attenuates inflammation in vitro and in vivo, suggesting that PEP-1-GLRX1 may be a potential therapeutic protein for inflammatory diseases.