• Title/Summary/Keyword: LPS-induced inflammation

Search Result 942, Processing Time 0.027 seconds

The anti-inflammatory effect of Portulaca oleracea 70% EtOH Extracts on lipopolysaccharide-induced inflammatory response in RAW 264.7 cells (LPS로 유도한 RAW 264.7 세포의 염증반응에서 마치현(馬齒莧) 70% 에탄올 추출물의 항염증 효과)

  • Seo, Sang-Wan
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.33-38
    • /
    • 2015
  • Objectives : Portulaca oleracea (PO) have been used as a traditional medicine to treat inflammatory diseases in Korea. However, the anti-inflammatory effect of PO ethanol extract on lipopolysaccharide (LPS)-induced inflammation is not well-known. Therefore, this study was performed to identify the anti-inflammatory effect of PO on LPS induced inflammatory.Methods : Identification of PO was conducted by comparison with purified standards by HPLC. To measure out the cytotoxicity of PO, author performed the MTT assay. To evaluate the anti-inflammatory effects of PO, author examined the inflammatory mediators such as nitric oxide (NO) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin, (IL)-1β and IL-6) on RAW 264.7 cells. Author also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor-B (NF-κB) activation by western blot.Results : Three major components (peaks 1, 2, 3) were detected in both varieties and peak 1 was characterized as caffeic acid, peak 2 as p-coumaric acid, and peak 3 as ferulic acid by comparison of chromatographic properties with authentic standards. Extract from PO itself did not have any cytotoxic effect in RAW 264.7 cells. PO inhibited LPS-induced productions of inflammatory mediators such as NO and pro-inflammatory cytokines in RAW 264.7cells. In addition, PO inhibited the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and NF-κB activation in RAW 264.7 cells.Conclusions : Above experiment data can be an important indicator for the identification of PO and this study suggest that treatment of PO could reduce the LPS-induced inflammation. Thereby, PO could be used as a protective agent against inflammation.

Platycodon grandiflorum Extracts Exhibits Anti-inflammatory Properties by Down-regulating MAPK Signaling Pathways Lipopolysaccharide-treated RAW264.7 Cells

  • Kim, Hyeon Jin;Jeong, Seong-Yun;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.369-376
    • /
    • 2012
  • Platycodon grandiflorum is a medicinal herb that is used to treat pulmonary and respiratory allergic disorders. The objective of this study was to investigate the protective effects of ethyl acetate extract of Platycodon grandiflorum (PGEA) against inflammation and to discern the molecular mechanism of PGEA in lipopolysaccharide (LPS)-induced signal pathways in RAW264.7 macrophage cells. PGEA suppressed the generation of nitric oxide (NO) and the expression of inducible NO synthase induced by LPS in RAW264.7 cells, and inhibited the release of pro-inflammatory cytokines induced by LPS in RAW264.7 cells. Western blot analysis showed that PGEA suppressed LPS-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK) but not extracellular signal-regulated kinase and $I{\kappa}-B{\alpha}$ degradation. Inactivation of JNK and p38 was effectively alleviated by PGEA, which subsequently affected the activation of c-Jun and c-Fos, which are the essential components of the activator protein-1 (AP-1) transcription complex. Taken together, the results indicate PGEA suppress the activation of p38, JNK, and AP-1, thereby inhibiting the generation of NO and pro-inflammatory cytokines, which affect the regulation of inflammation. PGEA may be useful for the treatment of various inflammatory diseases.

LSD1-S112A exacerbates the pathogenesis of CSE/LPS-induced chronic obstructive pulmonary disease in mice

  • Jeong, Jiyeong;Oh, Chaeyoon;Kim, Jiwon;Yoo, Chul-Gyu;Kim, Keun Il
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.522-527
    • /
    • 2021
  • Lysine-specific demethylase 1 (LSD1) is an epigenetic regulator that modulates the chromatin status, contributing to gene activation or repression. The post-translational modification of LSD1 is critical for the regulation of many of its biological processes. Phosphorylation of serine 112 of LSD1 by protein kinase C alpha (PKCα) is crucial for regulating inflammation, but its physiological significance is not fully understood. This study aimed to investigate the role of Lsd1-S112A, a phosphorylation defective mutant, in the cigarette smoke extract/LPS-induced chronic obstructive pulmonary disease (COPD) model using Lsd1SA/SA mice and to explore the potential mechanism underpinning the development of COPD. We found that Lsd1SA/SA mice exhibited increased susceptibility to CSE/LPS-induced COPD, including high inflammatory cell influx into the bronchoalveolar lavage fluid and airspace enlargement. Additionally, the high gene expression associated with the inflammatory response and oxidative stress was observed in cells and mice containing Lsd1-S112A. Similar results were obtained from the mouse embryonic fibroblasts exposed to a PKCα inhibitor, Go6976. Thus, the lack of LSD1 phosphorylation exacerbates CSE/LPS-induced COPD by elevating inflammation and oxidative stress.

Effects of Root of Taraxacum coreanum Nakai on the Inhibition of Inflammation and Oxidative Stress Induced by Lipopolysaccharide in ICR Mice (흰 민들레 뿌리의 항염증 및 산화 스트레스 개선 효과)

  • Cho, Byung-Je;Kim, Mijeong;Song, Yeong Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1763-1770
    • /
    • 2015
  • The effects of root of Taraxacum coreanum Nakai (TC), on the suppression of inflammation and oxidative stress induced by lipopolysaccharide (LPS) in ICR mice were studied. LPS (10 mg/kg body weight) was injected into ICR mice in between two consecutive oral administrations. Hot water extract of fresh TC (HWETC) was administered to mice immediately before and 24 h after LPS injection. The animal groups used in this study were as follows: NOR group (PBS injection, DW administration), CON group (LPS injection, DW administration), and TC group (LPS injection, 1.4 g/kg bw of HWETC administration). Mice in the CON group lost weight due to inflammation induced by LPS, while the body weight of the TC group mice increased significantly, indicating that inflammation was inhibited by HWETC administration. Compare with the CON group, plasma and hepatic triglyceride, reactive oxygen species, peroxynitrite, and hepatic thiobarbituric acid reactive substances concentrations of the TC group decreased significantly (P<0.05). The protein expression of a pro-inflammatory transcription factor, nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) and its target enzyme, cyclooxygenase 2, increased in response to LPS injection, but was suppressed by HWETC administration (P<0.05). In conclusion, HWETC appears to ameliorate the oxidative stress and inflammatory responses induced by LPS via inhibition of $NF-{\kappa}B$ activation.

The effect of Gagamchunggan-tang on lipopolysaccharide-induced expression of $NF{\kappa}-B$ downstream genes in HepG2 cell (Lipopolysaccharide로 유발된 HepG2 세포의 염증반응에 대한 가감청간탕의 효과에 대한 연구)

  • Kim Sung-Hwan;Seo Sang-Ho;Hong Sang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.113-122
    • /
    • 2003
  • Objective : The aim of this study was to evaluate the efficacy of Gagamchunggan-tang on anti-inflammation reaction with lipopolysaccharide (LPS)-induced HepG2 cell. Method : We examined the effects of the Gagamchunggan-tang, a traditional drug for liver inflammation, on the process of lipopolysaccharide(LPS)-induced nuclear factor-${\kappa}Bp65(NF-{\kappa}Bp65)$ activation in HepG2 cell. SDS-PAGE, Western blotting, Immunofluorescence staining were studied. Results : Immunoblot analysis showed that the level of nucleic $NF-{\kappa}Bp65$ was rapidly up-regulated and cytosolic inhibitory $I-{\kappa}B{\alpha}$ was down-regulated by LPS challenge. While Gagamchunggan-tang inhibited an increase of $NF-{\kappa}Bp65$ and degradation of $I-{\kappa}B{\alpha}$ in HepG2 cell. Besides LPS-induced expression of a group of genes, such as tumor necrosis factor-${\alpha}(TNF-{\alpha})$, inducible nitric oxide synthase(iNOS) and cyclooxygenase-2 (COX-2), are repressed by Gagamchunggan-tang. It may be concluded that Gagamchunggan-tang attenuates the progress of LPS-induced inflammation by reduction of $NF-{\kappa}Bp65$ activation. Conclusion : The Gagamchunggan-tang would be useful as a therapeutic agent for endotoxin-induced liver disease.

  • PDF

Effect on Inflammatory-cytokines Production Inhibition and Analgesic Activity of Perilla Frutescens Extracts (차조기추출물에 의한 염증성 cytokine 생성억제 및 진통작용에 관한 연구)

  • Kim, Si-Na;Lee, Eun-Jung;Lee, Hyun-Ji;Nam, Gyeong-Sug;Kim, Hee-Seok;Hwang, Sung-Wan;Hwang, Sung-Yeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.414-419
    • /
    • 2006
  • Prostaglandins biosynthesis and nitric oxide production have been implicated in the process of inflammation and osteoarthritis. And nitric oxide (NO) activated the MMPs responsible for PG degradation in articular chondrocytes. Therefore, we have studied the effects on anti-inflammation and analgesic by ethyl acetate fraction from 70% ethanol extract of Perilla Frutescens (EPF). EPF inhibited LPS plus inflammation-cytokines-induced proteoglycan (PG) degradation, matrix-metalloproteinase (MMP-2,9) expression in rabbit articular chondrocytes. Also, EPF have inhibitory effects on LPS or LPS plus inflammation cytokines-induced nitric oxide (NO) and PGE2 production in mouse macrophage andrabbit articular chondrocytes. These results suggest that EPF decreases PGE2, iNOS, MMPs activity and PG degradation in mouse macrophage and/or rabbit articular chondrocytes. In vivo, EPF was shown to have inhibitory effects on acetic acid-induced pain. The herbal extract with this profile, may have utility in the treatment of osteoarthritis.

Rhamnazin inhibits LPS-induced inflammation and ROS/RNS in raw macrophages

  • Kim, You Jung
    • Journal of Nutrition and Health
    • /
    • v.49 no.5
    • /
    • pp.288-294
    • /
    • 2016
  • Purpose: The aim of this work was to investigate the beneficial effects of rhamnazin against inflammation, reactive oxygen species (ROS)/reactive nitrogen species (RNS), and anti-oxidative activity in murine macrophage RAW264.7 cells. Methods: To examine the beneficial properties of rhamnazin on inflammation, ROS/ RNS, and anti-oxidative activity in the murine macrophage RAW264.7 cell model, several key markers, including COX and 5-LO activities, $NO^{\cdot}$, $ONOO^-$, total reactive species formation, lipid peroxidation, $^{\cdot}O_2$ levels, and catalase activity were estimated. Results: Results show that rhamnazin was protective against LPS-induced cytotoxicity in macrophage cells. The underlying action of rhamnazin might be through modulation of ROS/RNS and anti-oxidative activity through regulation of total reactive species production, lipid peroxidation, catalase activity, and $^{\cdot}O_2$, $NO^{\cdot}$, and $ONOO^{\cdot}$ levels. In addition, rhamnazin down-regulated the activities of pro-inflammatory COX and 5-LO. Conclusion: The plausible action by which rhamnazin renders its protective effects in macrophage cells is likely due to its capability to regulate LPS-induced inflammation, ROS/ RNS, and anti-oxidative activity.

Effects of Prunella vulgaris Pharmacopuncture on Lipopolysaccharide-Induced Acute Inflammatory Rat Model (하고초 약침이 LPS로 유발된 급성염증 백서 모델에 미치는 영향)

  • Lee, Jong-Wook;Lee, Hyang-Sook;Lee, Eun;Lee, Joon-Moo
    • Korean Journal of Acupuncture
    • /
    • v.26 no.3
    • /
    • pp.43-54
    • /
    • 2009
  • Objectives : To investigate the anti-inflammatory effects of Prunella vulgaris pharmacopuncture in lipopolysaccharide (LPS)-induced inflammatory rat model. Methods : Sprague-Dawley rats were divided into 5 groups; normal control (n=8), LPS control (n=8), LPS+Prunella vulgaris pharmacopuncture at CV4 (CV4, n=8), LPS+Prunella vulgaris pharmacopuncture at ST36 (ST36, n=8), and LPS+Prunella vulgaris pharmacopuncture at CV12 (CV12, n=8). Pharmacopuncture was given every two days for 4 weeks followed by inflammation induction by peritoneal LPS injection (5mg/kg). Proinflammatory cytokines including interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6), tumor necrosis factor-$\alpha$ (TNF-$\alpha$), interleukin-10 (IL-10), thiobarbituric acid reactive substance (TBARS) from blood and liver tissue were compared before and 5 hrs after inflammation induction. Results : In CV4 and CV12 groups, plasma IL-$1{\beta}$, IL-6 and TNF-$\alpha$ levels increased by LPS injection, significantly decreased 5 hrs after injection (p<0.05). For CV12 group, plasma IL-10 concentration significantly increased (p<0.05). Liver IL-$1{\beta}$ and IL-6 levles significantly decreased in CV4 and CV12 groups (P<0.05), while normal and LPS control groups were not significantly different in TNF-$\alpha$ and IL-10 levels. Plasma TBARS concentration was significantly decreased in CV12 group, while there was no significant difference among LPS control and pharmacopuncture groups for liver TBARS concentration. Conclusions : Based on the present findings, Prunella vulgaris pharmacopuncture at CV12 may have a potentially preventive anti-inflammatory effect in an LPS-induced inflammatory rat model.

  • PDF

The Effects of bilobalide Extracted from Ginkgonis Folium on Inflammation (은행잎의 주성분인 bilobalide가 염증반응에 미치는 효과)

  • Jung, Je-Ryong;Kil, Ki-Jung
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.85-93
    • /
    • 2015
  • Objectives : Bilobalide (BIL) is a predominant sesquiterpene trilactone constituent that accounts for a partial portion of the standardized Ginkgonis Folium extract, which has been widely used to treat a variety of neurological disorders involving cerebral ischemia and neurodegeneration. In this study, it was tested whether BIL exhibits anti-inflammatory activities on inflammation response, or not. Methods : To elucidate the molecular mechanisms of BIL on pharmacological and biochemical actions in inflammation, we examined the effect of BIL on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages. The investigation was focused on how BIL affect on inflammation-related mediators including various signals such as nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible NO synthase(iNOS), cyclooxygenase-2(COX-2), interleukin-6(IL-6), tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), mitogen-activated protein kinases(MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) in LPS-stimulated RAW 264.7 cells. Results : We found that BIL inhibited LPS-induced NO, $PGE_2$, IL-6 and $TNF-{\alpha}$ productions as well as the expressions of iNOS and COX-2. Furthermore, BIL suppressed the LPS-induced phosphorylation for MAPK activation. Conclusions : These results suggest that BIL has inhibitory effects on LPS-induced $PGE_2$, NO, IL-6 and $TNF-{\alpha}$ production, as well as the expressions of iNOS and COX-2 in the murine macrophage. It seems that these inhibitory effects occur by blocking the phosphorylation of MAPKs for activation. Then, BIL suppressed the activation of nuclear factor $NF-{\kappa}B$ in nucleus. These observations suggest that BIL has anti-inflammatory effect by inhibiting.

Evaluation of Efficacy evaluation of Hwangryunhaedok-tang and Gungangbuja-tang on lipopolysaccharide (LPS)-induced inflammation mouse model (Lipopolysaccharide로 유도된 염증 mouse model에서의 황련해독탕(黃連解毒湯)과 건강부자탕(乾薑附子湯)의 효능평가)

  • Choi, You-Youn;Kim, Mi-Hye;Lee, Tae-Hee;Yang, Woong-Mo
    • Herbal Formula Science
    • /
    • v.20 no.2
    • /
    • pp.83-92
    • /
    • 2012
  • Objectives : The aim of this study was to evaluate the efficacy of Hwangryunhaedok-tang (HHT) and Gungangbuja-tang (GBT) on lipopolysaccharide (LPS)-induced mouse model of inflammation. HHT and GBT are one of the representative prescriptions of cold drug and one of the representative prescriptions of hot drug, respectively. For experimental evaluation of their efficacy, we investigated the anti-inflammatory effects of HHT and GBT on LPS-induced inflammation and the mechanisms of their action. Methods : ICR mice were given a HHT (50, 500 mg/kg), GBT (100, 1000 mg/kg) extract orally on three consecutive days. On the third day, they were administered LPS intraperitoneally (35 mg/kg), 1 h after the last sample administration. Blood and liver samples were taken 6 h after the LPS challenge. Cytokine expression and inflammation-related protein factor analyses were performed by Western blotting. Results : Oral administration of HHT significantly reduced pro-inflammatory cytokines, including interleukin (IL)-6, and interferon (IFN)-${\gamma}$ in the serum. While GBT inhibited an increase of IL-6, IFN-${\gamma}$ was not affected. Immunoblot analysis showed that LPS-induced NF-${\kappa}b$ activation was inhibited by GBT, meanwhile HHT only inhibited NF-${\kappa}b$ expression at high does (500 mg/kg). In addition, HHT and GBT inhibited LPS-induced phosphorylation of Erk1/2, Jnk and p38 MAPKs. GBT also significantly inhibited i-Nos and Cox-2 expression, and HHT inhibited only i-Nos expression. Conclusions : Both of HHT and GBT showed anti-inflammatory effects against LPS-induced endotoxemia. However, HHT significantly decreased inflammatory cytokine levels, such as IL-6 and IFN-${\gamma}$ more than GBT, while GBT significantly inhibited inflammatory proteins, including NF-${\kappa}b$, MAP Kinases, i-Nos and Cox-2, more than HHT. These results suggest that HHT and GBT regulate the different mechanisms of action and pathways, presumably by regulating cytokine levels (IL-6, IFN-${\gamma}$), NF-${\kappa}b$ activation, and several pro-inflammatory gene expression, although both of HHT and GBT have anti-inflammatory effects.