• 제목/요약/키워드: LPS-induced inflammation

검색결과 949건 처리시간 0.026초

Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl ${\beta}$-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Kim, Ji-Young;Park, Jun-Ho;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권1호
    • /
    • pp.79-86
    • /
    • 2014
  • Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl ${\beta}$-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-$1{\beta}$ and TNF-${\alpha}$. In addition, CG significantly suppressed LPS-induced degradation of $I{\kappa}B$. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells.

홍삼이중탕(紅蔘理中湯)이 LPS로 유발된 마우스 대식세포 RAW 264.7의 nitric oxide 및 hydrogen peroxide 생성에 미치는 영향 (Effects of Red Ginseng-Ejung-tang on Nitric Oxide and Hydrogen Peroxide Production in LPS-induced Mouse Macrophages RAW 264.7)

  • 이지영;박완수
    • 동의생리병리학회지
    • /
    • 제25권2호
    • /
    • pp.294-299
    • /
    • 2011
  • The purpose of this study is to investigate effects of Red Ginseng-Ejung-tang (RE) on nitric oxide (NO) and hydrogen peroxide production in RAW 264.7 mouse macrophages induced by lipopolysaccharide (LPS). Cell viability was measured by modified MTT assay. NO production was measured by Griess reagent assay. Hydrogen peroxide production was measured by dihydrorhodamine 123 (DHR) assay. RE did not show cell toxicity against RAW 264.7 for 24 hr incubation at the concentrations of 10, 25, 50, 100, and $200{\mu}g/mL$ in RAW 264.7. RE significantly inhibited NO production for 24 hr incubation at the concentrations of 10, 25, 50, and $100{\mu}g/mL$ in RAW 264.7 (P < 0.05). RE significantly inhibited the LPS-induced production of NO for 24 hr incubation at the concentrations of 10, 25, 50, and $100{\mu}g/mL$ in RAW 264.7 (P < 0.05). RE significantly inhibited the LPS-induced production of hydrogen peroxide for 16, 24, 40, 48, 64, and 72 hr incubation at the concentrations of 50, 100, and $200{\mu}g/mL$ in RAW 264.7 (P < 0.05). These results suggest that RE has anti-inflammatory property related with its inhibition of NO and hydrogen peroxide production in LPS-induced macrophages.

인진호(茵蔯蒿)와 한인진(韓茵蔯)의 추출용매별 항염증 효능 비교 (Comparison of Anti-inflammatory effects between Artemisia capillaris and Artemisia iwayomogi by extraction solvents)

  • 노동진;최진규;홍순선;오명숙
    • 대한본초학회지
    • /
    • 제33권3호
    • /
    • pp.55-61
    • /
    • 2018
  • Objectives : Artemisia capillaris Thunberg (AC) and Artemisia iwayomogi Kitamura (AI) have been used without distinguishment since ancient times due to similar appearance. In this study, we compared the inhibitory effects of AC and AI on the expression of inflammatory cytokines induced by lipopolysaccharide (LPS) in murine macrophages. Methods : AC and AI were extracted by reflux with distilled water (DW) and 70% ethanol (EtOH). We investigated the inhibitory effects of AC and AI on the expression of nitric oxide (NO), inducible NO synthase (iNOS) and tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$) induced by LPS in macrophages. Results : Firstly, yield of the samples was higher in order of Artemisia iwayomogi DW Extract (AID), Artemisia iwayomogi 70% EtOH Extract (AIE), Artemisia capillaris DW Extract (ACD) and Artemisia capillaris 70% EtOH Extract (ACE). All of the samples were not toxic in macrophages. The inhibitory effect of the samples on LPS-induced NO expression was stronger in the order of AIE, ACE, AID and ACD. The inhibitory effect of the samples on LPS-induced inducible iNOS expression was stronger in the order of AIE, ACE and AID. Effect of ACD was same with that of AID. In addition, inhibitory effect of the samples on LPS induced $TNF-{\alpha}$expression wes stronger in the order of AIE, ACE, AID and ACD. Conclusion: These results showed that AI would be more effective than AC and 70% EtOH would be more effective than DW as an extraction solvent in inflammatory diseases.

Lipid Polysaccharides have a Detrimental Effect on the Function of the Ovaries and Uterus in Mice through Increased Pro-Inflammatory Cytokines

  • Jihyeon Seo;Jungmin Lee;Sua Kim;Minji Lee;Hyunwon Yang
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권4호
    • /
    • pp.135-144
    • /
    • 2022
  • As the number of coronavirus disease 2019 (COVID-19) vaccinations increases, various side effects are being reported, and menstrual abnormalities have been reported as a side effect in women. However, it is still unclear whether the COVID-19 vaccine has detrimental effects on the female reproductive system. Therefore, we investigated the effect of excessive immune response on reproductive function by administering Lipopolysaccharides (LPS) instead of the COVID-19 vaccine. The immune response in mice was induced by injection of LPS. Mice injected with saline 5 times were used as a control group, and mice injected with LPS 5 times were used as an experimental group. Repeated administration of LPS significantly reduced the number of corpus luteum (CL). On the other hand, the injection of LPS did not affect the development of follicles leading before the CL. The expression of the apoptosis-related genes Fas and Fas-L increased in the experimental group. In addition, the expression of the inflammation-related genes increased in the experimental group. In this study, we confirmed that LPS had detrimental effects on the uterus and ovaries in mice. These results suggest that injection of LPS can cause immune reactions within the uterus and ovaries and cause hormonal changes, which can have adverse effects such as abnormal operation or bleeding of the menstrual cycle. These results are expected to help determine the cause of decreased reproductive function, infertility, or physiological disorders caused by the COVID-19 vaccine.

대식세포에서 산화질소 생성에 대한 당귀(當歸) 에탄올 추출물의 억제효과 (Inhibitory Effect of Angelica gigas Nakai Extract on Nitric Oxide Production in RAW 264.7 Cells)

  • 정미영;박히준;정지행;김진용;강전모;이나경;임사비나
    • 대한한의학회지
    • /
    • 제28권2호통권70호
    • /
    • pp.155-165
    • /
    • 2007
  • Objective : The Angelica gigas Nakai ethanol extract (AGE) was investigated to compare nitric oxide (NO) production and $NF-{\kappa}B$ activity from RAW 264.7 cells, since NO and nuclear $factor-{\kappa}B$ $(NF-{\kappa}B)$ have been shown to be factors implicated in inflammatory disease. Method : AGE was prepared by extracting medicinal herb with 70% (v/v) ethanol solution. We investigated production of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) gene expression by ARE in LPS-stimulated RAW 264.7 macrophage cells. We also investigated inhibition of LPS-induced activation of $NF-{\kappa}B$ on western blot. Result : LPS-induced RAW 264.7 cells increased NO production and iNOS expression. Upon treatment with AGE, nitrite production was significantly inhibited in a concentration-dependent manner compared to the untreated control. AGE inhibited this LPS-induced iNOS mRNA and protein in a dose-dependent manner. AGE markedly inhibited the expression of iNOS mRNA and protein at a concentration of 100 ${\mu}g/ml$. LPS-induced RAW 264.7 cells with AGE blocked inhibitory $factor-{\kappa}B{\alpha}$ degradation. Conclusion :This study shows that AGE seems to attenuate inflammation through inhibition of NO production and iNOS expression by blockade of $NF-{\kappa}B$ activation in LPS-stimulated RAW 264.7 cells.

  • PDF

C2C12 세포에서 lipopolysaccharide에 의해 유도된 근육위축증에 대한 butyrate의 개선효과: JNK 신호전달 억제와 미토콘드리아의 기능 개선 (Butyrate Ameliorates Lipopolysaccharide-induced Myopathy through Inhibition of JNK Pathway and Improvement of Mitochondrial Function in C2C12 Cells)

  • 프라모더 바하더 케이씨;강봉석;정남호
    • 생명과학회지
    • /
    • 제31권5호
    • /
    • pp.464-474
    • /
    • 2021
  • 대사성질환, 암, 손상, 및 패혈증 등에 의해 유도되는 염증은 산화스트레스를 통해 세포의 미토콘드리아의 기능을 감퇴시켜 신경증과 근육위축증 등을 야기한다. 본 연구에서는 lipopolysaccharide (LPS)에 의해 유도된 미토콘 드리아의 기능감퇴와 근육위측증에 대한 butyrate의 억제효과를 확인하고자 하였다. LPS의 처리는 C2C12세포에서 MAPK의 활성을 통해 미토콘드리아 분열을 촉진하는 DRP1 (Ser616) 인산화와 Atrogin-1의 발현을 증가시켰다. 그러나 butyrate를 처리한 C2C12세포에서는 LPS 처리에 의한 염증 효과가 유의적으로 감소하며, 미토콘드리아 분열을 억제하는 DRP1 (Ser637)의 인산화와 mitofugin2 (Mfn2)의 발현을 증가를 유도하는 것을 확인하였다. 또한 butyrate를 처리한 세포에서 대사성질환을 유발하는 pyruvate dehydrogenase kinase 4 (PDK4)의 발현을 억제함이 관찰되었다. 이는 butyrate가 포도당 대사에서 염증에 의해 유도되는 Warburg 효과를 억제하여 산화스트레스를 개선함으로써, JNK의 활성을 억제하는 것으로 확인되었다. 이러한 결과들은 butyrate가 항산화효과를 통해 패혈증과 대사성질환과 같은 염증에 의해 유도되는 미토콘드리아의 기능 감퇴와 이에 따른 근육위축증을 개선할 수 있는 후보물질로 활용될 가능성이 있을 것으로 기대된다.

Therapeutic Effects of S-Petasin on Disease Models of Asthma and Peritonitis

  • Lee, Kyoung-Pil;Kang, Saeromi;Noh, Min-Soo;Park, Soo-Jin;Kim, Jung-Min;Chung, Hae Young;Je, Nam Kyung;Lee, Young-Geun;Choi, Young-Whan;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.45-52
    • /
    • 2015
  • To explore the anti-allergic and anti-inflammatory effects of extracts of Petasites genus, we studied the effects of s-petasin, a major sesquiterpene from Petasites formosanus (a butterbur species) on asthma and peritonitis models. In an ovalbumin-induced mouse asthma model, s-petasin significantly inhibited the accumulations of eosinophils, macrophages, and lymphocytes in bronchoalveolar fluids. S-petasin inhibited the antigen-induced degranulation of ${\beta}$-hexosamidase but did not inhibit intracellular $Ca^{2+}$ increase in RBL-2H3 mast cells. S-petasin inhibited the LPS induction of iNOS at the RNA and protein levels in mouse peritoneal macrophages. Furthermore, s-petasin inhibited the production of NO (the product of iNOS) in a concentration-dependent manner in the macrophages. Furthermore, in an LPS-induced mouse model of peritonitis, s-petasin significantly inhibited the accumulation of polymorpho nuclear and mononuclear leukocytes in peritoneal cavity. This study shows that s-petasin in Petasites genus has therapeutic effects on allergic and inflammatory diseases, such as, asthma and peritonitis through degranulation inhibition in mast cells, suppression of iNOS induction and production of NO in macrophages, and suppression of inflammatory cell accumulation.

제주산 우뭇가사리 유래 한천 가수분해물의 항염 활성 효과 (Agar Hydrolysates Obtained from Jeju Island Attenuates the LPS-induced Inflammation in In Vitro and In Vivo Zebrafish Embryos)

  • 김서영;선현진;은창호;김길남;전유진
    • 한국해양바이오학회지
    • /
    • 제11권2호
    • /
    • pp.71-80
    • /
    • 2019
  • Previously, agar obtained from Gelidum sp. has a small molecular weight and has the disadvantage of inherent viscosity properties and poor functionality as a dietary fiber. In order to improve aforementioned disadvantages, agar having a fluidity that can be added to food at a higher concentration that a powder agar having a gelling property at low concertation was manufactured. In addition, the anti-inflammatory activity of agar hydrolysates was evaluated to confirm their potential as a functional material. As a result, agar hydrolysates significantly reduced NO levels secreted by LPS-activated macrophages and inhibited the expression of iNOS and COX-2, which are inflammatory mediators that regulates NO secretion in macrophages. Furthermore, in in vivo zebrafish embryos model results demonstrated significant reduction of LPS induced NO production after the treatment of agar hydrolysate hydrolyzed for 360 min. In addition, ROS production and cell death by stresses were also reduced in LPS-exposed embryos after the treatment of agar hydrolysis product hydrolyzed for 360 min. Taken together, agar hydrolysate hydrolyzed for 360 min can be easily added into food due to their fluidity and used as a food ingredient that inhibits inflammation due to their anti-inflammatory property.

LPS에 의해 유발된 염증(炎症) 스트레스에 대한 황련(黃蓮)과 부자(附子)의 효과 (Effects of Coptidis Rhizoma and Aconiti Lateralis Preparata Radix on the Change of Plasma Corticosterone Level and Rectal Temperature Induced by LPS)

  • 조은호;이태희
    • 대한본초학회지
    • /
    • 제21권2호
    • /
    • pp.77-85
    • /
    • 2006
  • Objectives : We investigated the effects of Coptidis Rhizoma and Aconiti Lateralis Preparata Radix on the LPS(Lipopolysaccharide) ICV(intracerebroventricular) injection. Methods : We measured plasma corticosterone level and rectal temperature in mice induced by I.C.V. injection of LPS (100ng/mouse). Results : The results were as follows.. 1. The plasma corticosterone levels in CR-1(0.5g/kg), CR-2(1.0g/kg), CR-3(3.0g/kg) were not decreased significant comparing with the control group.(P<0.05) 2. The plasma corticosterone level in AR-1(0.5g/kg) was decreased significant comparing with the control group.(P<0.05), but AR-2(1.0g/Kg) and AR-3(3.0g/kg) were not decreased significant comparing with the control group.(P<0.05). 3. The rectal temperature in CR-1(0.5g/kg), CR-2(1.0g/kg), CR-3(3.0g/kg) was decreased significant comparing with the control group.(P<0.05) 4. The rectal temperature in AR-1(0.5g/kg), AR-2(1.0g/kg), AR-3(3.0g/kg) was not decreased significant comparing with the control group.(P<0.05) Conclusion : These data revealed that Rhizoma Coptidis might have no significant effect on inflammation stress and Aconiti Lateralis Preparata Radix(0.5g/kg/mouse) might have significant effect on inflammation stress.

  • PDF

Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice

  • Han, Jie;Xu, Yunhe;Yang, Di;Yu, Ning;Bai, Zishan;Bian, Lianquan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.134-141
    • /
    • 2016
  • To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) in preventing lipopolysaccharide (LPS)-induced intestinal injury, 18 mice (at 5 wk of age) were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight) for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05), and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05) and villus height:crypt depth ratio (42%, p<0.05), and lower crypt depth in jejunum (15.55%, p<0.05), as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05). ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor ${\alpha}$ (22.28%, p<0.05) and heat shock protein (HSP70) (77.42%, p<0.05). In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05) and intestinal trefoil peptide (17.75%, p<0.05). Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05) and its receptor (200%, p<0.05) gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor.