• 제목/요약/키워드: LPG valve

검색결과 74건 처리시간 0.024초

LP가스용 차단기능형 수평식 용기밸브에 대한 설계연구 (Design Study of Automatic Cut-off Horizontal Valve for a LPG Cylinder)

  • 김청균
    • 한국가스학회지
    • /
    • 제19권6호
    • /
    • pp.80-84
    • /
    • 2015
  • 본 연구에서는 기존의 차단기능형 수직식 용기밸브와 새로이 개발된 수평식 용기밸브의 몸체전고와 중량에 대한 설계 데이터를 고찰하였다. 차단기능형 수평식 용기밸브의 전고는 기존의 차단기능형 수직식 용기밸브에 비해 41~42%나 획기적으로 줄어들었다. 또한, 수평식 밸브의 몸체 무게는 기존의 차단기능형 수직식 밸브에 비해 29~40%나 줄어든 결과를 얻었다. 이러한 결과는 단지 기존의 수직식 밸브에서 밸브의 여러 가지 구성요소를 수평식으로 배열을 바꾼 구조변경 설계를 통해 확보한 것이다.

직접분사식 희박연소 LPG엔진에서 흡배기 밸브시기가 연소 및 배기특성에 미치는 영향 (Effects of Intake and Exhaust Valve Timing on Combustion and Emission Characteristics of Lean-Burn Direct-Injection LPG Engine)

  • 박철웅;김태영;조시현;오승묵
    • 대한기계학회논문집B
    • /
    • 제39권1호
    • /
    • pp.45-51
    • /
    • 2015
  • 최근 강화되는 연료소비율과 배기 규제에 대응하기 위해 자동차용 엔진에 다양한 신기술들이 적용되고 있다. 직접분사식 희박연소 엔진은 안정적인 성층혼합기 연소를 통해 연료소비율 및 배출가스 개선이 가능하지만 과잉공기 조건에서 상대적으로 높은 수준은 질소산화물의 배출은 해결되어야 할 과제이다. 본 연구에서는 직접분사식 희박연소 LPG 엔진에서 가변 밸브 기구를 이용한 흡기 및 배기밸브 시기의 변경이 엔진의 성능 및 배출가스에 미치는 영향을 파악하고자 하였다. 스로틀링을 하지 않은 부분부하 운전 조건에서 흡기밸브 열림 시기의 진각은 공기과잉률의 증가에 의한 질소산화물 배출 증가에 원인으로 작용하였다. 배기밸브 열림 시기를 진각할 경우 팽창일 감소와 펌핑손실 증가에 의해 연료 소비율이 악화되었다.

제3세대 LPLI 엔진 연소실내 스월유동 및 희박연소 특성 해석 (Analysis of Cylinder Swirl Flow and Lean Combustion Characteristics of 3rd Generation LPLI(Liquid Phase LPG Injection) Engine)

  • 강건용;이진욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.26-33
    • /
    • 2007
  • The intake swirl motion, as one of dominant effects for an engine combustion. is very effective for turbulence enhancement during the compression process in the cylinder of 2-valve engine. Because the combustion flame speed is determined by the turbulence that is mainly generated from the mean flow of the charge air motion in intake port system. This paper describes the experimental results of swirl flow and combustion characteristics by using the oil spot method and back-scattering Laser Doppler velocimeter (LDV) in 2-valve single cylinder transparent LPG engine using the liquid phase LPG injection. For this. various intake port configurations were developed by using the flow box system and swirl ratios for different intake port configurations were determined by impulse swirl meter in a steady flow rig test. And the effects of intake swirl ratio on combustion characteristics in an LPG engine were analyzed with some analysis parameters that is swirl ratio. mean flow coefficient, swirl mean velocity fuel conversion efficiency. combustion duration and cyclic variations of indicated mean effective pressure(IMEP). As these research results, we found that the intake port configuration with swirl ratio of 2.0 that has a reasonable lean combustion stability is very suitable to an $11{\ell}$ heavy-duty LPG engine with liquid phase fuel injection system. It also has a better mean flow coefficient of 0.34 to develope a stable flame kernel and to produce high performance. This research expects to clarify major factor that effects on the design of intake port efficiently with the optimized swirl ratio for the heavy duty LPG engine.

디젤기관의 LPG 혼합에 의한 오염배출물 저감특성 (Emission characteristics of diesel engine by mixing LPG)

  • 장영준;전충환;이춘우
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.44-52
    • /
    • 1993
  • In this study, the characteristics of decreasing exhaust gas of diesel engine was examined in dual fuel method by using commertial LPG for automotive. LPG was supplied to engine intake port by fumigation method and flow rate was controlled by using the needle valve. LPG supply ratios were 0, 20, 30% of total fuel amount to be supplied to engine by mass base. We investigated the effect of LPG supply ratio on exhaust gas concentrations related to excess air ratio and engine load at 1600, 1800, 2000 rpm. Soot concentration decreased about 30% in proportion to the increase of the LPG supply ratio. NOx concentration decreased in proportion to the increase of the LPG than diesel only and the increase rate was higher at low engine load. BSFC(Brake specific fuel consumption) was lower in proportion to the increase of the LPG supply ratio at high engine load and to the decrease of LPG supply ratio at low engine load.

  • PDF

외부화재시 LPG 소형저장탱크의 안전성에 관한 연구 (A Study on the Safety of Small LPG Storage Tanks at External Fires)

  • 임지표;마병철;정창복
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.64-72
    • /
    • 2015
  • The purpose of this study is to study the safety of a small LPG storage tank with a capacity less than 3 ton when it is exposed to an external fire. First, simulation studies were carried out using ASPEN Plus and PHAST to demonstrate that overpressurization in the tank can be relieved by discharging the LPG through an adequately sized safety valve, but the release may lead to the secondary risk of fire and explosion around the tank. Next, the temporal variations of the temperatures of the lading and tank wall were obtained using AFFTAC, which showed that the tank wall adjacent to the vapor space could be overheated in about 11 min to such a point that the weakened strength might cause a rupture of the tank and subsequent BLEVE. The consequences of the BLEVE were estimated using PHAST. Finally, several practical measures for preventing the hazards of overheating were suggested, including an anti-explosion device, sprinkling system, insulation, heat-proof coating, and enhanced safety factor for tank fabrication. The effectiveness of these measures were examined by simulations using AFFTAC and ASPEN Plus.

국내 LPG 집단공급시설 환경에 적합한 매몰배관용 과류차단밸브 성능시험 절차 개발 (Development of Performance Test Procedure for the Excess Flow Valve for Buried Piping for the Domestic LPG Mass Supply System)

  • 장찬영;이우귀연;이진한
    • 한국가스학회지
    • /
    • 제22권6호
    • /
    • pp.16-27
    • /
    • 2018
  • 대한민국 정부에서 2014년부터 LPG배관망과 LPG소형탱크를 도시가스 공급망 개설이 어려운 산간이나 도서지역에 보급하는 사업을 시작했다. 마을단위와 군단위로 LPG집단공급시설을 설치하면서 기존의 가스공급 압력이 아닌 10배 이상의 높은 준저압(25kPa~100kPa)으로 소비자에게 공급하게 되면서 가스사고의 위험성이 높아졌다. 기존의 가스공급압력보다 10배 이상 높은 압력이기 때문에 가스가 누출 되었을 때 빠른 속도로 많은 양이 누출하게 된다. 이에 준저압 가스배관의 안전성 확보를 위해 과류차단밸브가 필요하게 되었지만, 국내에서는 준저압 매몰배관용 과류차단밸브가 미개발되어 있으며 보급 또한 되어 있지 않는 상황이다. 이에 한국가스안전공사에서는 과류차단밸브의 국산화를 위해 과류차단밸브를 기개발한 해외의 성능기준과 제품을 조사 중에 있으며, 과류차단밸브의 성능평가를 위해 성능시험설비를 구축하여 준저압 연료가스 매몰배관용 과류차단밸브를 연구 개발 중에 있다.

가솔린과 LPG 예혼합 압축 착화 엔진의 노킹 특성 (Knock Characteristic Analysis of Gasoline and LPG Homogeneous Charge Compression Ignition Engine)

  • 염기태;배충식
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.54-62
    • /
    • 2007
  • The knock characteristics in an engine were investigated under homogeneous charge compression ignition (HCCI) operation. Liquefied petroleum gas (LPG)and gasoline were used as fuels and injected at the intake port using port fuel injection equipment. Di-methyl ether (DME) was used as an ignition promoter and was injected directly into the cylinder near compression top dead center (TDC). A commercial variable valve timing device was used to control the volumetric efficiency and the amount of internal residual gas. Different intake valve timingsand fuel injection amounts were tested to verify the knock characteristics of the HCCI engine. The ringing intensity (RI) was used to define the intensity of knock according to the operating conditions. The RI of the LPG HCCI engine was lower than that of the gasoline HCCI engine at every experimental condition. The indicated mean effective pressure (IMEP) dropped when the RI was over 0.5 MW/m2and the maximum combustion pressure was over 6.5MPa. There was no significant relationship between RI and fuel type. The RI can be predicted by the crank angle degree (CAD) at 50 CA. Carbon monoxide (CO) and hydrocarbon (HC) emissions were minimized at high RI conditions. The shortest burn duration under low RI was effective in achieving low HC and CO emissions.

대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구 (Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine)

  • 오승묵;김창업;이진욱;김창기;강건용;배충식
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.5-16
    • /
    • 2003
  • Fuel distribution, combustion, and flame propagation characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine. Optically accessible single cylinder engine and laser diagnostics system were built for quantifying fuel concentration by acetone PLIF(planar laser induced fluorescence) measurements. In case of Otto cycle engine with large bore size, the engine knock and thermal stress of exhaust manifold are so critical that lean burn operation is needed to reduce the problems. It is generally known that fuel stratification is one of the key technologies to extend the lean misfire limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs2.3. Thus, strong swirl flow could promote desirable axial fuel stratification and, in result, may make flame propagation stable in the early stage of combustion.

  • PDF