• Title/Summary/Keyword: LPG valve

Search Result 74, Processing Time 0.03 seconds

Study for Failure Examples Including with Gas filter Clogging of Emergency Cutting Valve, Assemblying Part Damage of Solenoid Valve, Contact Damage of LPG Switch Connector Fin in a LPG Car (LPG 자동차의 긴급차단밸브 기상필터막힘, 솔레노이드밸브 조립부손상, LPG 스위치 커넥터 핀 접촉불량에 관련된 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Jee Hyun;Kim, Sung Mo;Jung, Dong Hwa;You, Chang Bae;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • This paper is a purpose to study and analyze the engine starting failure examples for LPG car. The first example, the researcher verified the phenomenon that didn't supply the fuel because of filter clogging by fine alien substance in the gas valve line when he inspected the emergency cutting valve. The second example, there was no the influence of gas leakage when the solenoid operated at first. But the damage part of solenoid assemblying face wad downed a durability according to running a valve. Eventually, the researcher checked on the phenomenon of engine stopping by no gas feeding in solenoid because of leaking of gas. The third example, the researcher sought that the wiring sheaths of connector fin between EGR 10A fuse and LPG switch verified the burn-out phenomenon due to the bad contacting as tension damage produced the overheating. Therefore, the manager of a car has to do pre-inspection no producing electric failure and he must maintain his car with optimum condition.

A Study on the Characteristics of Exhaust Gas According to the Use of Gasoline and LPG in SI Engine for UTV (UTV용 SI엔진에서 가솔린과 LPG 사용에 따른 배출가스 특성 연구)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.94-100
    • /
    • 2022
  • Even in non-road UTV (Utility Terrain Vehicle), spark ignition engines are often used to reduce emissions. In this study, gasoline and LPG (Liquified Petroleum Gas) fuels were applied to UTV engines, and the exhaust gas and combustion stability were compared through engine tests. A 0.8-liter two-cylinder SI engine was used in the experiment. Experiments were conducted while changing the IVO (Intake Valve Open) and EVC (Exhaust Valve Close) at 1500 rpm 14 N·m, 40 N·m, and 3000 rpm 17 N·m, 44 N·m conditions. As a result of the experiment, when the valve overlap increased according to the change of IVO and EVC, combustion stability decreased and THC emission increased, but NOx decreased. Comparing the LPG engine with the gasoline engine, the amount of CO2 and PN (Particulate Number) generation decreased in the LPG engine, and the combustion stability was good.

A Study on the Strength Safety of LPG Fuelling Nozzle (LPG 충전장치의 강도안전성에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.72-77
    • /
    • 2018
  • This paper presents the FEM analysis results on the strength safety of LPG fuelling nozzle, which is composed of ball valve and long cylinder tube. For the strength safety analysis of LPG fuelling Nozzle, the gas pressure of 0.5~3.5MPa has been supplied to the ball valve and long cylinder tube bodies with the wall thickness of 1.7~3.5mm. The maximum von Mises stress of the ball valve with 1.7mm wall thickness is 25.4MPa for the supply gas pressure of 3.5MPa, which is 25.9% compared with that of the yield stress of the brass. And the maximum von Mises stress was 23.7MPa when a 3.5MPa gas pressure was applied to a long cylinder tube with a wall thickness of 1.7mm, which was 6.7% more safe than the ball valve which was analyzed under the same conditions. For the increased wall thickness, 2.0mm of the long cylinder tube, the maximum von Mises stress of 20.2MPa is 14.8% more safe compared with that of 1.7mm wall thickness of the same cylinder tube. Thus, the wall thickness of the ball valve and cylinder tube is recommended as an optimized thickness of 1.7~2.0mm for the strength safety of the LPG fuelling nozzle.

Emissions and Combustion Characteristics of LPG HCCI Engine (LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

A Study on the development of gas metering valve system (가스 계량 밸브 시스템의 개발에 관한 연구)

  • Choi, Young-Gyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.200-204
    • /
    • 2014
  • LPG is used in the home would have to depend on the provider, because there is no method for measuring the capacitance. In addition, by measuring the gas capacities can not be known because of the LPG gas replacement time and requires an alarm for replacement. In this study, and that the gas capacities to the trusted user and the supplier, in order to know when it is time to change to LPG gas by applying a Hall effect sensor developed a gas capacities measurement the valve system.

LPG-DME Compression Ignition Engine with Intake Variable Valve Timing (LPG-DME 압축착화 엔진에서 흡기 가변밸브 영향)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.158-165
    • /
    • 2008
  • The combustion and exhaust emissions characteristics of a liquefied petroleum gas-di-methyl ether compression ignition engine with a variable valve timing device were investigated under various liquefied petroleum gas injection timing conditions. Liquefied petroleum gas was used as the main fuel and was injected directly into the combustion chamber. Di-methyl ether was used as an ignition promoter and was injected into the intake port. Different liquefied petroleum gas injection timings were tested to verify the effects of the mixture homogeneity on the combustion and exhaust emission characteristics of the liquefied petroleum gas-di-methyl ether compression ignition engine. The average charge temperature was calculated to analyze the emission formation. The ringing intensity was used for analysis of knock characteristics. The combustion and exhaust emission characteristics differed significantly depending on the liquefied petroleum gas injection and intake valve open timings. The CO emission increased as the intake valve open and liquefied petroleum gas injection timings were retarded. However, the particulate matter emission decreased and the nitrogen oxide emission increased as the intake valve open timing was retarded in the diffusion combustion regime. Finally, the combustion efficiency decreased as the intake valve open and liquefied petroleum gas injection timings were retarded.

An Experimental Study on the Effects of EFV of LPG Engine on Automobiles Acceration Performance (LPG기관의 과류밸브가 가속성능에 미치는 영향에 관한 실험적 연구)

  • Jang Tae-Ik;Kim Chang-Hun;Kim Chul-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1072-1081
    • /
    • 2004
  • This paper is to investigate on the effects of the hole size of spring type EFV(excessive flow valve) for automobiles The analytical and experimental methods were employed to measure the discharge coefficient. choked flowrate and Pressure wave in a bombe, line and vaporizor The size of EFV was determined to meet the legally permitted limits with the capacity of engine displacement up to 2000cc, according to the obtained discharge coefficient. The Purpose of this paper is 1) to find causes of bad acceration performance in LPG engines 2) to find optimal design determination of spring coefficient and orifice hole size of excessive flow valve in LPG engine 3) to find pressure wave of bombe, line and vaporizer through expeimental verification. Experimental results indicated that increase of orifice size 0.5mm to 1mm be caused to increase discharge coefficient, and choked flow rate and decrease operation range of difference pressure wave.

Investigation of Icing Phenomenon in Liquid Phase LPG Injection System (액상분사식 LPG 연료공급방식의 아이싱현상에 관한 연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system is considered as one of the next generation fuel supply systems for LPG, vehicles, since it can accomplish the higher power, higher efficiency, and lower emission characteristics than the existing mixer type fuel supply system. However, during the injection of liquid LPG fuel into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. A problem is that the moisture in the air freezes around the outlet of a nozzle, which is called icing Phenomenon. It may cause damage to the outlet nozzle of an injector. The frozen ice deposit detached from the nozzle also may cause a considerable damage to the inlet valve or valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of the air temperature in the inlet duct. Also, it was observed that the icing occurs first in the inlet of a nozzle, and grows considerably at the upper part of the nozzle inlet and the opposite side of the nozzle entrance. An LPG fuel, mainly consisting of butane, has lower latent heat of vaporization than that of propane, which is an advantage in controlling the icing phenomenon.

  • PDF

Noise Source Identification and Countermeasure for the Noise of LPG Injector (LPC 인젝터의 소음원 규명 및 소음저감 대책)

  • Kim, Won-Jin;Park, Chong-Hyun;Kim, Sung-Dae;Lee, Byung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.144-151
    • /
    • 2002
  • This work focuses on finding out the noise source and the method of reducing the noise level of LPG(liquefied petroleum gas) fuel injector. The noise of LPG injector in operating condition is due to the impact between valve and valve seat. This study shows that if the revolution of engine is increased, the noise of LPG injector will be more serious but it is not nearly affected by the increment of fuel pressure. The source and transmission paths of noise are identified through the analysis of noise generation mechanism and noise spectrum. The sound absorbing material is tested to verify its efficiency of sound absorption thor the LPG injector. The effect of noise reduction of absorbing material is remarkable when the engine speed is high. Consequently two methods of reducing the noise level are suggested from the identified results. The one is to equip the absorbing material on the outer side of injector and the other is to coat with a soft material or equip a soft ring on the surface of impact.

A Study on the Development of Overflow Cutoff Valve for Liquefied Petroleum Gas Cylinders (액화석유가스 용기용 과류차단밸브의 개발에 관한 연구)

  • Rhim Jong-Kuk
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.158-161
    • /
    • 2005
  • This research is about overflow cutoff valve for liquefied petroleum gas cylinders. This valve was developed based on Bernoulli's equation and Newton's equation. The structure of overflow cutoff valve was made by insert module instead of the ordinary valve that is used at present. Recently, the increase in use of gas for fuel in houses has resulted to more frequent occurrences of gas related accidents. In Korea, the government has made a law for the obligatory use of the cutoff valves. This cutoff valve is not ya developed. This research focuses on the use of over flow cutoff valve for LPG cylinders. If this valve is adapted, many accidents can be prevented.