• 제목/요약/키워드: LPG Engine Piston

검색결과 20건 처리시간 0.022초

LPGdusfy 엔진의 피스톤온도 및 카본디포짓 형성에 관한 연구 (A Study on the Piston Temperatures and Carbon Deposit Formation in LPG Fuelled Engine)

  • 민병순;최재권;박찬준
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.100-106
    • /
    • 1998
  • The wide open throttle performance and piston temperatures were measured by the change of fuel : gasoline and liquefied petroleum gas(LPG). Bench test method was developed and experimented to study the effect of temperature on the formation of carbon deposit. The bench test results were confirmed by measuring the piston temperature and observing the deposit production rate at an actual engine running condition. Results show that if the fuel of spark ignition engine is changed from gasoline to LPG, the output power decreases about 10% and the piston temperatures increase about 40~55$^{\circ}C$. In actual engine tests, because of this temperature increase, it was observed that the quantity of carbon deposit in the top ring groove increased in a big degree. Consuquently, it is known that the fing sticking may occur if the gasoline engine was rebuilt to LPG fuelled engine. Therefore, in order to preserve the durability of LPG fuelled engine, it is necessary to lower the piston temperature by hardware modificationor to reduce the carbon deposit by the improvement of engine oil.

  • PDF

대형 LPG 엔진 피스톤의 온도 분포 해석을 위한 열전도 역문제에 관한 연구 (Research on the Inverse Heat Conduction Problem for Thermal Analysis of a Large LPG Engine Piston)

  • 이부윤;박철우;최경호
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.146-159
    • /
    • 2002
  • An efficient method to predict the convection heat transfer coefficients on the top surface of the engine piston is proposed. The method is based on the inverse method of the thermal conduction problem and uses a numerical optimization technique. In the method, the heat transfer coefficients are numerically obtained so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. The method can be effectively used to analyze the temperature distribution of engine pistons in case when application of prescribed-temperature boundary condition is not reasonable because of insufficient number of measured temperatures. A hollow sphere problem with an analytic solution is taken as a simple example and accuracy and efficiency is demonstrated. The method is applied to a practical large liquid petroleum gas(LPG) engine piston and the heat transfer coefficients on the top surface of the piston is successfully calculated. Resulting analyzed temperature favorably coincides with measured temperature.

열전도의 역문제 방법을 이용한 대형 LPG 엔진 피스톤의 열부하 해석 (Analysis of Thermal Loading of a Large LPG Engine Piston Using the Inverse Heat Conduction Method)

  • 박철우;이부윤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.820-827
    • /
    • 2006
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed.

  • PDF

대형 LPG엔진용 피스톤 형상 및 흡기포트 선회비 최적화를 위한 가시화엔진내 스월유동특성 해석 (A Study on the Characteristics of Swirl Flow in Transparent Engine with Different Swirl Ratio and Piston Configuration for Heavy-duty LPG Engine)

  • 이진욱;강건용;민경덕
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.59-65
    • /
    • 2004
  • The configuration of intake port and piston is a dominant factor of inlet air flow and mixture formation in an engine cylinder, resepectively. This study has analyzed intake port and piston characteristics for swirl flow of a heavy-duty LPG engine. As an available technology to optimize intake port, the steady flow rig test has been applied for measuring swirl ratio and mean flow coefficient. And we measured the mean velocity and turbulence intensity of swirl flow under motoring condition in transparent engine cylinder by backward scattering LDV system. From these results, the piston and cylinder head with a good evaluated swirl flow characteristics were developed and adapted fur a 11L heavy-duty engine using the liquid phase LPG injection (LPLI) system. The obtained results are expected to be a fundamental data for developing intake port and piston.

LPG 액정분사 방식의 대형 엔진용 피스톤의 온도분포와 열응력 해석 (Temperature Distribution and Thermal Stress Analyses of a Large LPLi Engine Piston)

  • 임문혁;손재율;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.538-550
    • /
    • 2004
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston with the oil gallery are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed. With varying cooling water temperature, temperature, stress, and thermal expansion of the piston are analyzed and evaluated.

대형 액상 LPG 분사식 SI 엔진에서 화염 가시화를 이용한 희박영역에서의 화염 전파특성 연구 (Flame Propagation Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine by Flame Visualization)

  • 김승규;배충식;이승목;김창업;강건용
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.23-32
    • /
    • 2002
  • Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean bum operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean bum performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using an W intensified high-speed CCD camera. Concepts of flame area speed, In addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics. The results show the correlation between the flame propagation characteristics, which is related to engine performance of lean region, and engine design parameters such as swirl ratio, piston geometry and injection timing. Stronger swirl resulted in foster flame propagation under open valve injection. The flame speed was significantly affected by injection timing under open valve injection conditions; supposedly due to the charge stratification. Piston geometry affected flame propagation through squish effects.

대형 LPG 단기통엔진에서 압축비가 기관성능에 미치는 영향 (Influence of Compression Ratio on Engine Performance in Heavy-duty LPG Single-cylinder Engine)

  • 김진호;최경호
    • 에너지공학
    • /
    • 제11권2호
    • /
    • pp.160-165
    • /
    • 2002
  • LPG 연료를 사용하는 대형 단기통엔진은 연소과정과 배기성능을 파악하기 위해서 설계.제작되었다. 실린더헤드와 피스톤 크라운은 LPG 연소를 위해서 변경되었다. 또한 플라이휠은 단기통엔진의 진동을 최소로 하기 위해서 제작되었다. 실험용 단기통엔진의 실린더내경과 행정은 각각 130mm와 140mm이다. 압축비는 피스톤 크라운 형상을 다르게 하여 8에서 9로 변경되었다. 본 연구를 위해서 제작된 단기통엔진은 1,000rpm에서 운전되었다. 본 연구의 주요 결론은 (1)제작된 엔진의 출력은 3가지 다른 압축비별로 당량비 1.0에서 최고를 나타낸다. (2) 압축비 증가에 따라서 출력이 약간 증간한다. (3) 최적 점화시기는 크랭크각으로 2에서 10까지 압축비의 증가와 함께 지각되어진다.

LPG액상분상엔진의 분사특성이 성능에 미치는 영향 (Effect of Injection Characteristics on Performance in a LPLi Engine)

  • 김창기;이진욱;강건용
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.46-52
    • /
    • 2004
  • An LPG engine (KL6i) for heavy duty vehicle has been developed using liquid phase LPG injection (LPLi) system, which has regarded as one of next generation LPG fuel supply systems. For the KL6i engine, lean burn technology was introduced to minimize the thermal loading and NOx emissions due to an increase of the engine power. In this work, injection timing and piston bowl shape were investigated for the stabilization of lean burn characteristics. Experimental results reveals that fuel stratification induced by these parameters is most effective strategy to extend lean combustion limit in the LPLi system.

  • PDF

직접분사식 LPG 엔진의 성층화 연소 및 안정성에 관한 연구 (A Study on the Stratified Combustion and Stability of a Direct Injection LPG Engine)

  • 이민호;김기호;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.106-113
    • /
    • 2016
  • Lean burn engine, classified into port injection and direct injection, is recognized as a promising way to meet better fuel economy. Especially, LPG direct injection engine is becoming increasingly popular due to their potential for improved fuel economy and emissions. Also, LPDi engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. However, LPDi engine has many difficulties to be solved, such as complexity of injection control mode (fuel injection timing, injection rate), fuel injection pressure, spark timing, unburned hydrocarbon and restricted power. This study is investigated to the influence of spark timing, fuel injection position and fuel injection rate on the combustion stability of LPDi engine. Piston shape is constituted the bowl type piston. The characteristics of combustion is analyzed with the variations of spark timing, fuel injection position and fuel injection rate (early injection, late injection) in a LPDi engine.

엔진 물통로 내부 벽면 스케일 축적이 LPG 엔진의 열적 내구성에 미치는 영향에 대한 연구 (A Study on Effect of Scale Formation in Water Jacket on Thermal Durability in LPG Engine)

  • 류택용;신승용;최재권
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the effects of scale formation in engine water jacket upon the thermal durability of engine itself and its component parts were studied. To understand the effect of quality of water, a full load engine endurance test for 50 hours was carried out with not-treated underground water. The followings were found through the tested engine inspection after the endurance test; 1-2 mm thick scale formation in the engine water jacket, valve seat wear, piston top land scuffing, piston pin stick, and cylinder bore scuffing in siamese area. In order to understand the causes of above test results, the heat rejection rate to coolant, the metal surface temperature of combustion chamber, and the oil and exhaust gas temperatures were measured and analyzed. The scale formed in the engine water jacket played a role as thermal insulator. The scale formed in the engine reduced the heat rejection rate to coolant and it caused to increase the metal surface temperature. The reduced heat rejection rate to coolant increased the heat rejection rate to oil and exhaust gas and increased the oil and exhaust gas temperature. Also, the reasons of valve seat wear, piston top land scuffing and cylinder bore scuffing, and piston pin stick quantitatively analyzed in this paper.

  • PDF