• Title/Summary/Keyword: LOAD CELL

Search Result 1,188, Processing Time 0.026 seconds

Correlation of Protumor Effects of Leucine-Rich Repeat Kinase 2 with Interleukin-10 Expression in Lung Squamous Cell Carcinoma (폐 편평세포암종 내 Leucine-Rich Repeat Kinase 2 암촉진 효과와 Interleukin-10 발현과의 연관성)

  • Sung Won LEE;Sangwook PARK
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.2
    • /
    • pp.105-112
    • /
    • 2023
  • Leucine-rich repeat kinase 2 (LRRK2) is known to play a crucial role in the pathophysiology of neurodegenerative disorders such as Parkinson's disease. LRRK2 is predominantly expressed in the lung as well as the brain. However, it is unclear whether LRRK2 expression correlates with the pathogenesis of lung squamous cell carcinoma (LUSC). This study analyzes the prognostic significance of LRRK2 in LUSC using the Kaplan-Meier plotter tool. High expression of LRRK2 is known to be associated with a bad prognosis in patients with LUSC. Patients with high LRRK2 expression, tumor mutational burden, high neoantigen load, and even gender correlation reportedly have the worse survival rates. In the gene expression profiling interactive analysis (GEPIA) database, the severity of pathogenesis in LUSC with high LRRK2 expression positively corresponds to a high expression of anti-inflammatory cytokines but not inflammatory cytokines. Similarly, the increased expression of interleukin (IL)10-related genes was shown to be significantly linked in LRRK2-high LUSC patients having a poor prognosis. Moreover, the tumor immune estimation resource (TIMER) database suggests that macrophages are one of the cellular sources of IL10 in LRRK2-high LUSC patients. Collectively, our results demonstrate that the postulated LRRK2-IL10 axis is a potential therapeutic target and prognostic biomarker for LUSC.

Humidification model and heat/water balancing method of PEMFC system for automotive applications (자동차용 연료전지 시스템의 가습모델과 열/물균형 유지방법)

  • Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.339-344
    • /
    • 2005
  • A PEMFC system model for FCEV was constructed and simulated numerically to examine the heat/water flow of the system and air/fuel humidification process for various operation conditions (ambient pressure /temperature/humidity, operating temperature, power load). We modeled PEMFC stack which can generate maximum electricity of about 80 kW. This stack consists of 400 unit cells and each unit cell has $250cm^2$ reacting area. Uniform current density and uniform operating voltage per each cell was assumed. The results show the flow characteristics of heat and water at each component of PEMFC system in macro-scale. The capacity shortage of the radiator occurred when the ambient was hot $(over\;40^{\circ}C)$ and power level was high (over 50 kW). In spite of some heat release by evaporation of water in stack, heat unbalance reached to 20kW approximately in such a severe operating condition. This heat unbalance could be recovered by auxiliary radiators or high speed cooling fan with additional cost. In cold environment, the capacity of radiator exceeded the net heat generation to be released, which may cause a problem to drop the operating temperature of stack. We dealt with this problem by regulating mass flow rate of coolant and radiator fan speed. Finally, water balance was not easily broken when we retrieved condensed and/or unused water.

  • PDF

A CICQ Switch Architecture Using Blocking Avoidance & Virtual Threshold Scheme for QoS Guaranteed Multicast Service (QoS가 보장된 멀티캐스트 서버스를 위한 Blocking Avoidance 셀 할당 기법과 Virtual Threshold 기법을 이용한 CICQ 스위치 구조)

  • Kim, Kyung-Min;Jung, Hyun-Duk;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.120-130
    • /
    • 2011
  • Recently the multicast based contents transmission is rapidly increasing due to the various multimedia services and the importance of switching technology to handle it is increasing as a consequence. Though the CICQ architecture has advantages that reduction of HoL blocking probability and simple scheduling using cross point buffer, it has disadvantage that the processing rate of multicast traffic can be significantly degraded corresponds to the traffic load increment. Several schemes have been proposed to solve this problem however they still can't provide enough processing ratio for multicast traffic. Therefore this paper proposes the BA cell assignment scheme and the VT scheme, and the processing rate of multicast traffic can be guaranteed by reducing the HoL blocking probability of multicast traffic and reservation of cross point buffer. Also simulation results verify that using the proposed scheme, the QoS of multicast service can be improved.

Fast Hilbert R-tree Bulk-loading Scheme using GPGPU (GPGPU를 이용한 Hilbert R-tree 벌크로딩 고속화 기법)

  • Yang, Sidong;Choi, Wonik
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.792-798
    • /
    • 2014
  • In spatial databases, R-tree is one of the most widely used indexing structures and many variants have been proposed for its performance improvement. Among these variants, Hilbert R-tree is a representative method using Hilbert curve to process large amounts of data without high cost split techniques to construct the R-tree. This Hilbert R-tree, however, is hardly applicable to large-scale applications in practice mainly due to high pre-processing costs and slow bulk-load time. To overcome the limitations of Hilbert R-tree, we propose a novel approach for parallelizing Hilbert mapping and thus accelerating bulk-loading of Hilbert R-tree on GPU memory. Hilbert R-tree based on GPU improves bulk-loading performance by applying the inversed-cell method and exploiting parallelism for packing the R-tree structure. Our experimental results show that the proposed scheme is up to 45 times faster compared to the traditional CPU-based bulk-loading schemes.

Operational Characteristics of Methanol Reformer for the Phosphoric Acid Fuel Cell System (인산형 연료전지용 메탄올 연료개질기의 운전 특성)

  • 정두환;신동열;임희천
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.200-207
    • /
    • 1993
  • A methanol reformer was designed and fabricated using a CuO-ZnO low temperature shift catalyst, and its operation characteristics have been studied for the phosphoric acid fuel cell (PAFC) power generation system. The type of reactor was annular Methanol was consumed both for heating and for reforming fuel. Contents of carbon monoxide produced from the reformer increased as the reaction temperatures increased, but decreased as the mole ratios of water to methanol(H$_2$O/CH$_3$OH) increased. At steady state operating conditional, temperature profile of the catalytic reactor of the reformer was well coincide with the model equation, and it took 50 minutes from start to the rated condition of the reformer. When the system was operated at 4/4 and 1/4 of load, thermal efficiencies of the system were 72.3% and 77%, respectively. When the PAFC system was operated with reformed gas in the range of 62 V-37.6 V and 0-147 A, the trend of I-V curve showed a typical fuel tell characteristic. At steady state condition, the flow rates of reforming and combustion methanol were 88.1 mol/h and 50.1 mol/h, respectively.

  • PDF

On Intelligent Paging Algorithm Maximizing Paging Processing Capacity in Wireless Networks (이동통신망에서 페이징 처리 용량을 최대화하는 지능형 페이징 기법 연구)

  • Lee, Dong-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.291-298
    • /
    • 2006
  • A new intelligent paging algorithm is proposed in this paper to maximize the paging capacity in wireless link of mobile communication systems. Intelligent paging algorithms have been studied to utilize limited wireless resource efficiently, in which a location area is divided to several paging areas which are searched sequentially. Previous intelligent paging methods mainly use location probability distribution of the paging target terminal to determine paging areas. However, these methods make the paging traffic of each cell non-uniformly distributed. Therefore, in relatively low paging load conditions, there exist cells congested with paging traffic in which paging traffic queues are overflowed and paging messages are lost. The proposed method determines paging areas to make the paging traffic distributed uniformly among cells by considering current paging traffic distribution in each cell. Performance evaluation shows that the proposed method outperforms the previous paging schemes much with respect to paging processing capacity.

  • PDF

Performance Analysis for ABR Congestion Control Algorithm of ATM Switch using Self-Similar Traffic (자기 유사한 트래픽을 이용한 ATM 스위치의 ABR 혼잡제어 알고리즘의 성능분석)

  • Jin, Sung-Ho;Yim, Jae-Hong
    • The KIPS Transactions:PartC
    • /
    • v.10C no.1
    • /
    • pp.51-60
    • /
    • 2003
  • One of the most important matters in designing network and realizing service, is to grip on the traffic characteristics. Conventional traffic prediction and analysis used the models which based on the Poisson or Markovian. Recently, experimental research on the LAN, WAN and VBR traffic properties have been pointed rut that they weren't able to display actual real traffic specificities because the models based on the Poisson assumption had been underestimated the long range dependency of network traffic and self-similar peculiarities, it has been lately presented that the new approach method using self-similarity characteristics as similar as the real traffic models. Therefore, in this paper, we generated self-similar data traffic like real traffic as background load. On the existing ABR congestion control algorithm, we analyzed by classify into ACR, buffer utilization. cell drop rate, transmission throughput with the representative EFCI, ERICA, EPRCA and NIST twitch algorithm to show the efficient reaction about the burst traffic.

Fabrication of Tissue Engineered Intervertebral Disc Using Enable 3D bio-printing and Scaffod-Free technologies (3D 바이오프린팅과 무지지체 조직공학 기술 기반 추간판 복합 조직 제작)

  • Kim, Byeong Kook;Park, Jinho;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • Intervertebral disc(IVD) mainly consists of Annulus fibrosus(AF) and Nucleus pulposus(NP), playing a role of distributing a mechanical load on vertebral body. IVD tissue engineering has been developed the methods to achieve anatomic morphology and restoration of biological function. The goal of present study is to identify the possibilities for creating a substitute of IVD the morphology and biological functions are the same as undamaged complete IVD. To fabricate the AF and NP combine biphasic IVD tissue, AF tissue scaffolds have been printed by 3D bio-printing system with natural biomaterials and NP tissues have been prepared by scaffold-free culture system. We evaluated whether the combined structure of 3D printed AF scaffold and scaffold-free NP tissue construct could support the architecture and cell functions as IVD tissue. 3D printed AF scaffolds were printed with 60 degree angle stripe patterned lamella structure(the inner-diameter is 5mm, outer-diameter is 10 mm and height is 3 mm). In the cytotoxicity test, the 3D printed AF scaffold showed good cell compatibility. The results of histological and immunohistochemical staining also showed the newly synthesized collagens and glycosaminoglycans, which are specific makers of AF tissue. And scaffold-free NP tissue actively synthesized glycosaminoglycans and type 2 collagen, which are the major components of NP tissue. When we combined two engineered tissues to realize the IVD, combined biphasic tissues showed a good integration between the two tissues. In conclusion, this study describes the fabrication of Engineered biphasic IVD tissue by using enable techniques of tissue engineering. This fabricated biphasic tissue would be used as a model system for the study of the native IVD tissue. In the future, it may have the potential to replace the damaged IVD in the future.

An Efficient MAC Protocol for Supporting Multimedia Services in APON (APON에서 멀티미디어 전송을 위한 효율적인 MAC 프로토콜)

  • 은지숙;이호숙;윤현정;소원호;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.132-141
    • /
    • 2000
  • In this paper, we proposed the MAC protocol of APON supporting multi-class traffic such as CBBUVBR, ABR, UBR, to guarantee the required QoS of each service. For this, we analyze the performance of variousrequest mechanisms and employee the different request mechanism for each traffic classes. Upstream anddownstream frame structures to minimize transmission overhead are proposed based on our request mechanism.The proposed MAC protocol applies the different priority to permit distribution process. CBBWBR traffic, withthe stringent requirements on CDV or delay, is allocated prior to any other class. ABR traffic, which hasnon-strict CDV or delay criteria, uses flexibly the available bandwidth but ensures a minimum cell rate (MCR).UBR traffic is allocated with lowest priority for the remaining capacity. The performance of proposed protocol isevaluated in terms of transfer delay and 1-point CDV with various offered load. The result of simulation showsthat the proposed protocol guarantees the required QoS of the corresponding category, while making use of theavailable resources in both an efficient and dynamical way.

  • PDF

The Analysis of the Energy Saving Performances of Building Materials using Phase Change Materials (상변화물질을 적용한 건축자재의 에너지절약 가능성 분석)

  • An, Sang-Min;Hwang, Suck-Ho;Kim, Tae-Yeon;Leigh, Seung-Bok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.162-167
    • /
    • 2011
  • Thermal storage plays an important role in building energy saving, which is greatly assisted by the incorporation of latent heat storage in building materials. A phase change material is a substance with a high heat of fusion which, melting and solidifying at a certain temperature, can be storing and releasing large amount of energy. Heat is stored or released when the material changes from solid to liquid. Integration of building materials incorporating PCMs into the building envelope can result in increased efficiency of the built environment. The aim of this research is to identify thermal performance of PCMs impregnated building materials which is applied to interior of building such as gypsum and red clay. In order to analyze thermal performance of phase change materials, test-cell experiments and simulation analysis were carried out. The results show that micro-encapsulated PCM has an effect to maintain a constant indoor temperature using latent heat through the test-cell experiments. PCM wallboard makes it possible to reduce the fluctuation of room temperature and heating and cooling load by using EnergyPlus simulation program. Phase change material can store solar energy directly in buildings. Increasing the heat capacity of a building is capable of improving human comfort by decreasing the frequency of indoor air temperature swings so that the interior air temperature is closer to the desired temperature for a long period of time.

  • PDF