• 제목/요약/키워드: LNG fuel gas supply system

검색결과 33건 처리시간 0.029초

액화 천연 가스 연료 선박의 연료 공급 장치 폭발 잠재 위험 분석 (Estimation of explosion risk potential in fuel gas supply systems for LNG fuelled ships)

  • 이상익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권9호
    • /
    • pp.918-922
    • /
    • 2015
  • 선박으로부터 배출되는 오염원과 온실가스에 대한 국제적 규제가 점점 더 강화되어 감에 따라, 액화 천연 가스를 선박의 연료로 사용하는데 대한 관심이 높아져 가고 있다. 본 연구는 액화 천연 가스 연료 선박에서 사용되는 두 가지 방식의 연료 가스 공급 장치에 대하여 폭발 잠재 위험 분석을 수행하였다. 8500 TEU 급 컨테이너 선박을 목표 선박으로 선정하여, 액화 천연 가스 저장 탱크를 설계하였고 각 연료 공급 방식의 운전을 위한 압력 조건을 가정하였다. 누출공의 크기를 세 개의 범주로 분류하여, 각 누출공 크기 범주에 대한 누출 빈도를 산출하였고, 대표 누출공의 크기와 누출량을 추산하였다. 방출률의 증가와 누출 빈도는 역비례 관계를 보였으며, 펌프 방식 연료 공급 장치에서는 누출 빈도가 높게 나타났고, 가압 방식 연료 공급 장치에서는 방출률이 높게 나타났다. 전산 유체 역학 시뮬레이션을 통하여 폭발 잠재 위험 분석을 수행하고 각 연료 공급 장치에 대한 결과를 비교하였다.

가스추진선박의 가스연료공급시스템에 대한 CFD를 이용한 정량적 위험도 해석에 관한 연구 (A Study on the Quantitative Risk Analysis Using CFD for the Fuel Gas Supply System of Gas Fueled Ship)

  • 김기평;김대헌;이영호
    • 대한조선학회논문집
    • /
    • 제54권1호
    • /
    • pp.1-9
    • /
    • 2017
  • LNG has significant advantages in regard to environmental aspects comparing with conventional fuel oil. In fact, it is estimated that NOx and SOx emission can be reduced by about 90% and 100%, respectively in case of using LNG as a fuel. LNG-fuelled ship has been considered to be the best option both from an environmental and an economic point of view. Along with these trends, some major shipyards and Classification Societies have started to carry out the risk-based system design for LNG-fuelled ship such as passenger ship, platform supply vessel and large container vessel etc. However, new conceptual gas fuelled ship has high risk level compared with vessel using traditional crude oil especially in view of gas explosion accident. Therefore safety area where installed fuel gas supply system is required risk based system design with special considerations. On this paper, the entire process necessary for the quantitative risk analysis was explained to meet the satisfactory safety level of gas fuelled ship.

Case study on operating characteristics of gas fueled ship under the conditions of load variation

  • Chun, Jung-Min;Kang, Ho-Keun;Kim, You-Taek;Jung, Mun-Hwa;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.447-452
    • /
    • 2016
  • The use of gas as fuel, particularly liquefied natural gas (LNG), has increased in recent years owing to its lower sulfur and particulate emissions compared to fuel oil or marine diesel oil. LNG is a low temperature, volatile fuel with very low flash point. The major challenges of using LNG are related to fuel bunkering, storing, and handling during ship operation. The main components of an LNG fuel system are the bunkering equipment, fuel tanks, vaporizers/heaters, pressure build-up units (PBUs), and gas controlling units. Low-pressure dual-fuel (DF) engines are predominant in small LNG-powered vessels and have been operating in many small- and medium-sized ferries or LNG-fueled generators.(Tamura, K., 2010; Esoy, V., 2011[1][2]) Small ships sailing at coast or offshore rarely have continuous operation at constant engine load in contrast to large ships sailing in the ocean. This is because ship operators need to change the engine load frequently due to various obstacles and narrow channels. Therefore, controlling the overall system performance of a gas supply system during transient operations and decision of bunkering time under a very poor infrastructure condition is crucial. In this study, we analyzed the fuel consumption, the system stability, and the dynamic characteristics in supplying fuel gas for operating conditions with frequent engine load changes using a commercial analysis program. For the model ship, we selected the 'Econuri', Asia's first LNG-powered vessel, which is now in operation at Incheon Port of South Korea.

LNG 추진 선박 엔진용 GVT 제어 시스템 개발 (Development of a GVT (Gas Valve Train) Control System for LNG Fueled Vessels)

  • 강인필;김규철
    • 동력기계공학회지
    • /
    • 제21권4호
    • /
    • pp.70-76
    • /
    • 2017
  • This paper presents the development of a Gas Valve Train (GVT) control system which is the core equipment of LNG fueled vessels. Due to the increasing worldwide demand for echo friendly green ship products, domestic companies urgently require to develop a core equipments for the LNG fueled vessels to secure worldwide markets in marine engineering. A LNG fueled engine generally equips the GVT, a fuel supply system that steadily supplies clean high-pressure LNG to the engine. The GVT requires a safety operational control system that can prevent any gas leakage accident, and a system that monitors operation status in real time. Therefore, we introduces a development for GVT control and monitoring system design and the design was systematically performed by means of functional analysis and differentiation of foreign advanced products.

배기가스 규제 대응을 위한 LNG연료추진선박의 HAZID 사례 분석에 관한 연구 (A Study on the Risk Assessment Case Analysis of LNG Fuelled Ships for Emission Control)

  • 이윤혁;;김유택;정진원;강호근
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 춘계학술대회
    • /
    • pp.162-163
    • /
    • 2018
  • 해양환경 및 배출가스 규제로 지금까지와는 다른 새로운 연료공급시스템을 적용하게 되는 LNG 추진 선박의 경우 초기 설계 단계에서 위해도 평가가 수행된다. 위해도 평가는 위험에 대한 분석과 평가를 체계적으로 가능하게 하는 일련의 논리적인 단계이다. LNG 연료추진선박은 크게 LNG Tank, Fuel Gas Supply System, Bunkering Manifold, LNG Engine으로 구성되며 이는 해당 선박의 특성, 크기, 항로, 운항거리, 사용엔진 등에 따라 구성요소가 달라지므로 각각의 선박에 대한 위험 요소가 달라지며, 위해도 분석 또한 달라진다. 본 연구에서는 LNG를 연료로 하는 선박들의 시스템에 대해 고찰하고, 실제 위험도 평가가 진행된 몇 가지 사례 선박들의 위해도 평가에 대한 분석을 하고자 한다.

  • PDF

LNG냉열이용 BOG 재액화긍정 해석연구 (New reliquefaction system of Boil-Off-Gas by LNG cold energy)

  • 윤상국;최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.256-263
    • /
    • 2002
  • The Boil-Off-Gases(BOG) in the LNG production terminal are continuously generated during the unloading, storage and supply processes by the heat penetration. In order to use these gases as useful fuel, the reliquefaction process should be installed to put the reliquefied BOG in the main LNG supply line before the secondary pump in terminal. The current reliquefaction method of BOG in LNG terminal is the direct contact one between LNG and BOG in the absorption column. But the system has severe disadvantage, which is the 10 times of LNG circulation needed for unit mass of BOG reliquefaction. It causes, therefore, high power consumption of LNG circulation pump and excessive city-gas supply, even if short demand of NG is needed in the summer time. In this paper, the new reliquefaction system of BOG by using LNG cold energy with indirect contact in precooler was suggested and analysed. The result showed new indirect contact method of BOG reliquefaction system between LNG cold energy and BOG is much more effective than the current direct contact one because of only about 1.3 times of LNG circulation needed and higher energy saving by pump power reduction.

CFD Approach on Gas Explosion for SIL in Gas Fuelled Ship

  • Kim, Ki-Pyoung;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.195-200
    • /
    • 2015
  • It is envisaged that the effect of increasingly stricter air emissions legislation implemented through IMO Annex VI and other local air quality controls, together with favorable financial conditions for the use of natural gas instead of liquid fuel oil as a bunker fuel, will see an increasing number of DF engine and single gas fuel engine applications to LNG carriers and other vessel types. As part of provision for the current international movements in the shipping industry to reduce GHG emission in air, new design concepts using natural gas as an alternative fuel source for propulsion of large commercial vessels, have been developed by shipyards and research institutes. In this study, an explosion analysis for a gas supply machinery room of LNG-fuelled container ship is presented. The gas fuel concept is employed for the high pressure ME-GI where a leakage in the natural gas double supply pipe to the engines is the subject of the present analysis. The consequences of a leak are simulated with computational fluid dynamics (CFD) tools to predict typical leak scenarios, gas cloud sizes and possible explosion pressures. In addition, capacity of the structure which is subject to explosion loads has been assessed.