• Title/Summary/Keyword: LNG engine

Search Result 96, Processing Time 0.03 seconds

A Development of an 3.4L-class Diesel-LNG Dual Fuel Engine for Farming Machine (3.4L 급 농기계용 디젤-천연가스 혼소 엔진 개발)

  • Sim, Juhyen;Ko, Chunsik;Lee, Sangmin;Lee, Okjae;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.187-190
    • /
    • 2012
  • An experimental study was performed to provide the effect of PM reduction and the improvement of diesel alternative ratio utilizing diesel-natural gas dual-fuel combustion mode in a retrofit 3.4-liter diesel engine. In order to achieve the same power as the original diesel engine, engine control unit (ECU) of the dual-fuel engine was calibrated. As a result, diesel alternative ratio was found that the maximum value of diesel alternative ratio was about 96%. Finally PM emission experiment was performed in C1-8 mode cycle and it was shown PM emission was extremely reduced down to $7.42{\ast}10^{-7}g/kWh$ comparing with mechanical diesel engine.

  • PDF

A Study on Vehicle Application and Performance of LNG-Diesel Dual Fuel Engine (LNG-디젤 혼소엔진의 성능 및 실차 적용성 연구)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Cho, Gyu-Baek;Hong, Sun-Cheol;Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 2011
  • The electronically controlled diesel engine was converted to dual fuel engine system. Test engine was set up for investigating the power output, thermal efficiency and emissions. ND 13-mode tests were employed for the engine test cycle. The emission result of dual fuel mode meets Euro-4 (K2006) regulation and the engine performance of dual fuel engine was comparable to the performance of diesel engine. To estimate economical efficiency, test vehicles have been operated on a certain driving route repeatedly. Fuel economy, maximum driving distance per refueling and driveability were examined on the road including free ways. Developed vehicle can be operated over 500 km with dual fuel mode and shows 80% of diesel substitution ratio. Driveability of dual fuel mode is similar with that of diesel mode.

LNG-Vessels Hybrid Engine Seawater Desalination Complex System (LNG 선박 하이브리드 엔진 및 해수 담수화 복합 시스템)

  • Lim, Jae Jun;Lee, Dong-Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.663-664
    • /
    • 2016
  • Temperature difference power generation using sea water is a method repeatedly closed liquefaction and gasification by using the ammonia (refrigerant) of the deep sea water and surface water with a temperature difference between turning the turbine. The larger the temperature difference between the nature of the temperature characteristic energy generation development, the better. This is the story that the surface waters of the deep-water temperature difference is large. But the winter is not large temperature difference between surface water and deep water has lowered energy efficiency. And desalination technologies accounted for 97% of the earth, but we can not eat the technology to convert sea water into fresh water, fresh water produced by the desalination technology that is available for various industries such as irrigation, drinking water in the vessel.In this paper, LNG transport vessels, based on the LNG transport ship to the temperature difference power generation using cold energy of thermal energy and LNG marine diesel engines, which use the existing order to improve the temperature of the surface waters of the season that is the current problem we propose that a complex development of desalination and desalination of seawater freezing research into hybrid research and utilizing the cold energy of the engine.

  • PDF

Optimal Process Design of Onboard BOG Re-liquefaction System for LNG Carrier (LNG 운반선을 위한 BOG 재액화시스템 최적 설계)

  • Hwang, Chulmin;Lim, Youngsub
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.372-379
    • /
    • 2018
  • High-pressure gas injection engines (HPGI) took center stage in LNG carrier propulsion systems after their advent. The HPGI engine system can be easily modified to include a re-liquefaction system by adding several devices, which can significantly increase the economic feasibility of the total system. This paper suggests the optimal operating conditions and capacity for a re-liquefaction system for an LNG carrier, which can minimize increases in the total annualized cost. The installation of a re-liquefaction system can save 0.23 million USD per year when the cost of LNG is 5 USD/Mscf. A sensitivity analysis with different LNG costs showed that the re-liquefaction system is profitable when the LNG cost is higher than 3.5 USD/Mscf.

Safety Assessment on Dispersion of BOG in LNG Fueling Station (LNG 자동차 충전소에서 BOG 확산에 따른 안전성평가 연구)

  • Lee, Seung Hyun;Kang, Seung Kyu;Lee, Young Soon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.76-82
    • /
    • 2012
  • A diesel-Liquefied natural gas(LNG) combustion engine truck fleet demonstration project had been carried out and commercial expansion project was launched. The key issues of these projects are the safety of LNG fuel station and the reduction of natural gas relief. When LNG is fueled to LNG vehicles the heat is input in the LNG system. The LNG in the fueling system was boiled and the vapor of LNG is vented through the safety devices. The temperature of the vapor of LNG is $-108^{\circ}C$ and density is heavier than air. It can be dispersed to downside of the fuel station. The safety evaluation is carried out using CFD program and risk assessment program for the vapor of LNG in the LNG vehicle fuel station. The hazards are identified and suggested the operation instruction to reduce the relief of LNG vapor.

A Case Study on the Engine Body Vibration Characteristics of Generator Set consists of Engine-resilient-mounted, Generator-rigid-mounted and Flexible-coupling (탄성지지된 엔진, 고정지지된 발전기 및 탄성 커플링으로 구성된 발전기 세트의 엔진 본체 진동 특성에 관한 사례 연구)

  • Kim, Hyojung;Kim, Sanghwan;Lee, Donchool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.443-446
    • /
    • 2014
  • Recently the demand for natural gas as clean and safe energy due to concerns about global warming and interests in green ship is increasing. The dual fuel(DF) engine, one of environmentally friendly engines, is preferred for general merchant ships and power plants as well as LNG carriers. This is for the reasons of having higher efficiency and lower nitrogen and sulfur oxides emissions by operating on LNG fuel with a small amount of light fuel oil. In this study, the engine body vibration characteristics of 12V50DF in a generator set with engine-resilient-mounted, generator-rigid-mounted and flexible-coupling configuration are investigated through theoretical analysis and comprehensive vibration measurement. This analysis showed the dynamic behavior of engine excitation forces and seismic waves. And the suitable countermeasures for reducing vibration and safe operation are proposed.

  • PDF

A study on the developments of STCW training of seafarers on ships applying in the IGF Code

  • Han, Se-Hyun;Lee, Young-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1054-1061
    • /
    • 2015
  • The International Maritime Organization (IMO) has been regulating emissions by making mandatory the compliance with institutions aimed at protecting air quality such as the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP) and Tier III. Under the circumstances, one of the response measures considered to be the most feasible is the replacement of existing marine fuel with Liquefied Natural Gas (LNG). The industry has been preemptively building infrastructure and developing and spreading engine technology to enable the use of LNG-fueled ships. The IMO, in turn, recently adopted the International Code of Safety for Ships Using Gases or Other Low-Flash-Point Fuels (IGF Code) as an institutional measure. Thus, it is required to comply with regulations on safety-related design and systems focused on response against potential risk for LNG-fueled ships, in which low-flash-point fuel is handled in the engine room. Especially, the Standards of Training, Certification and Watchkeeping (STCW) Convention was amended accordingly. It has adopted the qualification and training requirements for seafarers who are to provide service aboard ships subject to the IGF Code exemplified by LNG-fueled ships. The expansion in the use of LNG-fueled ships and relevant facilities in fact is expected to increase demand for talents. Thus, the time is ripe to develop methods to set up appropriate STCW training courses for seafarers who board ships subject to the IGF Code. In this study, the STCW Convention and existing STCW training courses applied to seafarers offering service aboard ships subject to the IGF Code are reviewed. The results were reflected to propose ways to design new STCW training courses needed for ships subject to the IGF Code and to identify and improve insufficiencies of the STCW Convention in relation to the IGF Code.

Development and Performance Test on the 1-Inch Glove Valve for the LNG Piping System (LNG 배관 시스템용 1인치 글로브 밸브 개발 및 성능실험)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • This study describes the development of a 1-inch cryogenic glove valve for an LNG pumping system and localization development achieved through the performance test. The cryogenic valve used in the LNG pumping system plays an important role in maintaining a flow rate by LNG transportation. This trial manufactured goods, which was achieved through reverse engineering and developing the assembly process. The result of the leak test satisfied the internal pressure condition using the 78-bar normal temperature test and maintained the anti-leakage condition. Also, the result of the cryogenic leak test (BS 6364: low temperature test procedure) maintained anti-leakage at -196 and 52 bar, which satisfied the test standards.

The New Trend of Propulsion and BOG Handling System from LNGCs (최근 LNG선의 추진 및 BOG 처리장치의 동향)

  • Kim, M.E.;Lee, K.W.;Lee, Y.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.940-945
    • /
    • 2005
  • In recent years, the LNGC fleet is expanded unprecedentedly. Ship's owners and shipbuilders are focusing on technology and reliability of new propulsion system from economical, environmental and safety angles. This paper give describes the new trend of propulsion system and boil off gas handling system from LNG carriers.

  • PDF

Experimental Study on Performance Characteristics of Liquid Rocket Engine (액체로켓엔진의 성능특성 연구)

  • 장행수;이성웅;조용호;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.211-217
    • /
    • 2003
  • A liquid rocket engine(LRE) Using LO$_2$/LNG(Liquefied Natural Gas) propellants was experimentally evaluated. The purpose of this study was to investigate the performance of the LO$_2$/LNG rocket combustor that is composed of three sect ions(igniter spacer, cylinder and nozzle section), especially focused on the influence of regenerative cool ing effect in association with the phase of regenerative coolant Series of tests were conducted under the conditions of water cool ing and regenerative cool ing with LNG in the cylinder section and independent cool ing with water in the igniter spacer and nozzle sections. Parametric studies on the variation of a chamber pressure and mixture ratio were undertaken. In addition, effect of propellant(LNG) composition and its enthalpy on the performance is examined.

  • PDF