• Title/Summary/Keyword: LNG 발전소

Search Result 45, Processing Time 0.022 seconds

The Development of Steel-plate Concrete Panels with Preplaced Lightweight Aggregates Concrete (프리플레이스트 경량골재 콘크리트를 사용한 합성형 구조모듈 제작 및 성능 평가)

  • Yoon, Jin Young;Kim, Jae Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • The steel-plate concrete(SC) is used in a form of module assembly construction in the outer wall of nuclear-power plant and LNG containment. Since the steel-plate concrete modules are generally manufactured from the plant, the weight of SC has significantly effect on the total construction cost in the aspect of shipment. Therefore, the use of lightweight aggregates concrete(LWAC), which fill the inside of SC module can be a solution. However, the amount of used lightweight aggregates(LWA) is limited in the use of current concrete mixing process due to the concrete quality problems and it also determines the allowable minimum density of LWAC. In this research, the preplaced casting method is applied because of increasing the volume fraction of LWA significantly, which results from the producing process of pre-packing the LWA in the formwork and filling the interstitial voids between LWA using cement paste grout. The density and compressive strength of selected preplaced LWAC were $1,600kg/m^3$ and 30MPa and it was applied for the mock-up specimens of SC panel. It was used for the 3-point bending test for evaluating its structural performance. The results show that the preplaced LWAC can reduce the density of concrete with the adequate mechanical and structural performance.

CO2 Emission and Productivity of Fossil-fueled Power Plants: A Luenberger Indicator Approach (CO2 배출량을 감안한 화력발전소의 생산성 변화 분석: Luenberger지수 접근법)

  • Kwon, Oh-Sang
    • Environmental and Resource Economics Review
    • /
    • v.19 no.4
    • /
    • pp.733-752
    • /
    • 2010
  • This study applies the Luenberger indicator approach to estimate productivity of the Korean fossil-fueled power plants. A panel data set of 25 power plants was used. The method incorporates $CO_2$ emission as an undesirable output and shows that ignoring $CO_2$ emission overestimates the productivity change. There are two sources of overestimation. First, the usual method estimates productivity change ignoring the increase in $CO_2$ emission that occurred during the study period. Second, the productivity change estimated by the usual method that does not incorporate $CO_2$ emission is very sensitively affected by the change in operation rate. The paper decomposes the productivity change into the efficiency change and the technical change. The results show that the two sources contribute to the productivity change almost equally. It is also shown that the size and the pattern of productivity change are dependent on the plants' fuel types. Non-LNG power plants which saved their energy consumption and thereby reduced their $CO_2$ emission have achieved relatively high rate of productivity improvement.

  • PDF

The Estimation of earthquake-resistance for gas utility using Equivalent Static Analysis (가스시설물의 등가정적 해석에 의한 내진성능 평가)

  • Koh J. P.;Hong S. K.;Kim J. H.;Jeong S. Y.
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.4 s.18
    • /
    • pp.23-32
    • /
    • 2002
  • The purpose of the present study is to analyze the response of Gas Utility subjected to Earthquake and to discuss the failure prediction of Kogas Storage Tank. Initially here, characteristics of Earthquake are reviewed and then earthquake-resistance Design is investigated based on previous earthquake hazard cases. Next, considering the distribution of the transverse permanent ground displacement and equivalent spring constant effect, formulae obtained by a beam theory are established to analyze PeungTak Center Control Room. This analysis was performed without consideration of axial effects. So the finite element analysis was used in order to consider the axial stiffness of Structure.

  • PDF

The Economic Effect of Industrial Investment on North Korea Natural Gas and Coal (북한 천연가스산업과 석탄산업 투자에 따른 경제적 파급효과)

  • Kim, Hyoungtae;Chae, Jungmin;Cho, Youngah
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • North Korea is currently undergoing an economic crisis of industrial productivity reduction, which resulted from decreased energy production and economic sanctions due to conflicts with the international society. This paper examined the technological status of North Korea's natural gas and coal industries which are essential sectors for recovery of the economy and North-South cooperation on energy industry. This paper also analyzed investment strategies in North Korean energy industries and calculated the size of economic ripple effect of the investment on North and South Korea. In order to analyze the effect of the investment on North Korean economy, we constructed an inter-industry relation table of North Korea for year 2014 and used an input-output model. The ripple effect of the investment in natural gas and coal industries turned out to be 1.012 billion dollars and 2.742 billion dollars respectively. In order to analyze the ripple effect of the investment on South Korean economy, we constructed an inter-industry relation table of South Korea for year 2013 and used a demand-driven model for inter-industry analysis. As a result, production, added-value and employment inducement coefficients of the investment were calculated as 2.02073, 0.62697 and 8.99409 for the natural gas industry and 2.02130, 0.62701 and 9.00413 for the coal industry respectively.

Effect of SO2 on NOx Removal Performance in Low Temperature Region over V2O5-Sb2O3/TiO2 SCR Catalyst Washcoated on the Metal Foam (저온영역에서 메탈폼에 코팅된 V2O5-Sb2O3/TiO2 SCR 촉매의 NOx 저감성능에 미치는 SO2 영향에 관한 연구)

  • Na, Woo-Jin;Park, Young-Jin;Bang, Hyun-Seok;Bang, Jong-Seong;Park, Hea-Kyung
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.132-138
    • /
    • 2016
  • The emission of SO2 is inevitable in case of combustion of most fossil fuels except LNG in commercial power plant which has a bad effect on the durability of SCR catalyst. To develop a low temperature SCR catalyst which has a high NOx removal performance and excellent durability to SO2, V2O5/TiO2 catalysts were prepared by coating on the metal foam substrate with the impregnation amount of Sb2O3 as promotor. This study has evaluated the NOx removal performance and the durability to SO2 on a laboratory scale atmospheric reactor and analyzed the properties of the prepared catalysts by means of porosimeter, BET, SEM (scanning electron microscope), EDX (energy dispersive x-ray spectrometer), XPS (X-ray photoelectron spectroscopy). It was found that the surface area of catalyst increased with the impregnation amount of Sb2O3 and the NOx removal performance showed the highest value at the 2 wt% impregnation of Sb2O3. This results was considered to be due to the optimum active site on the catalyst surface. And also, Sb2O3 impregnated catalysts presented that NOx removal performance was maintained despite the exposure to SO2 for 5 hours. Therefore it was confirmed that metal foam SCR catalyst for low temperature could be manufactured with the optimum control of Sb2O3 impregnation according to the SO2 presence or not.