기존의 LMS(Learning Management System)는 웹 기반의 e-Learning 교육의 장점에도 불구하고 학습자의 요구와 수준에 무관하게 학습과 관련한 컨텐츠들이 획일적으로 구성됨으로써, 학습자의 요구를 만족시키지 못하고 있다. 본 논문에서는 LCMS(Learning Content Management System) 와 LMS를 연계한 학습 통계 모듈을 제시하고, LMS에 학습자와 운영자에게 학습정보 데이터를 제공함으로써 학습하는 과정을 추적하고 학습이력을 관리 할 수 있는 학습통계모듈을 설계하고 구현한다. 제시된 모듈에서는 효과적인 학습통계을 위한 검색 방안으로 LCMS의 메타데이터와 다양한 학습관리 정보(CMI)값을 LMS를 호출하는 기능인 API(Application Program Interface) 어댑터를 이용하여 연계된 값과 LMS시스템에 학습지원과 운영지원 기능을 추가하여 나온 결과값을 바탕으로 하였다. 이 학습통계모듈을 통해서 LMS운영자는 학습자의 컨텐츠의 활용을 더욱 확장할 수가 있으며 학습자의 학습정보관리를 하는 LMS의 성능을 향상 시키고자 하였다.
학습관리 시스템(LMS)에 축적되는 로그 데이터는 학습 과정에 대한 양질의 정보를 제공한다. 지금까지 LMS 로그 데이터를 활용한 학업성취 예측 연구가 다양하게 수행되었지만, 상대적으로 적은 양의 학생 및 수업 데이터에 기반하고 있어 연구 결과 일반화 가능성에 한계가 존재한다. 본 연구는 대용량 LMS 로그 데이터를 이용해 대학생 학업성취를 조기예측하는 심층신경망 모델을 개발하고 성능을 검증했다. 이를 위해 가명화 처리된 LMS 로그 데이터 78,466,385건과 성적 데이터 165,846건을 활용했다. 그 결과, 본 연구에서 제안하는 예측 모델은 우수학생 집단을 학기 초부터 높은 수준의 정확도로 예측하였다. 한편 보통 및 저성취 집단에 대한 예측 정확도는 제한적인 수준이었지만, 예측시점이 늦을수록 향상되었다. 본 연구의 결과는 순수 LMS 로그 데이터만을 이용해 실제로 활용할 수 있을 정도의 일반화 성능을 가진 심층신경망 기반 조기예측 모델을 구현했다는 의의가 있다.
음성 인식 시스템은 다양하게 변화하는 환경 잡음에 빠르게 적응할 수 없어서 인식 성능을 저하시키는 요인이 된다. 본 논문에서는 평균 예측 LMS 알고리즘을 이용하여 반향 잡음에 강인하게 하는 방법으로 HMM 학습 모델을 구성하는 방법을 제안하였으며, 변화하는 반향 잡음에 적응하도록 HMM 학습 모델을 구성하여 인식 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 음성의 SNR은 평균 3.1dB이 향상되었고 인식률은 3.9% 향상되었다.
Contemporary University students are considered the Z generation who were born after 1995. They are more tech savvy than millennials. To target the generation, traditional class management platforms have evolved to smart LMS that is more customized and accessible for smart devices. Global level information search and collaboration can also be implemented using such smart LMS. However, switching from one LMS to another LMS requires great effort from teachers and support from staffs. This study measured the learners' perception of the system when they were exposed to a new smart-LMS. Blackboard Learn Ultra was used for 15 weeks and at the end of the semester, a questionnaire was administered to the students of these classes. Results indicated that experience with previous LMS discouraged students from adopting Blackboard Learn. Result of TAM modeling indicated that perceived usefulness, compared to perceived ease of use and attitude, was an effective aspect to bring positive acceptance of the system. A qualitative approach and network analysis were also conducted based on students' responses. Both positive and negative responses were detected. Inconvenience due to mechanical aspects was mentioned. Dissatisfaction compared to previous local LMS use was also mentioned. Mobile application and communication effectiveness were positive aspects. Revised course development and promoting how useful the system may help enhance the acceptance of the new system.
본 논문은 디지털컨텐츠의 재사용성과 효율적인 운용과 관리를 위한 SCORM 표준안에 따르는 LMS의 설계 및 구현에 관한 논문이다. 즉, 본 시스템은 XML을 이용한 메타데이타정의와 메타데이타를 관리하는 SQL서버와 이러한 컨텐츠를 관리하는 응용시스템을 ASP로 구현함으로써 세분화된 교육컨텐츠를 학습자가 효율적으로 이용하여 학습의 효과를 증대할 수 있도록 자기 주도형 학습을 지원하기 위한 LMS를 제안하였다.
한국 기업들의 필리핀 진출이 활발해지면서 필리핀 현지의 한국 업체들은 한국어 능력을 보유한 현지인력의 채용을 확대하고 있다. 이 논문에서는 한국의 e-learning 경험을 바탕으로 필리핀 현지 한국인 산업체 인력의 한국어 능력 향상을 위한 e-laering 시스템과 학습관리시스템을 설계하고 구현하였다. 이 시스템은 JAVA, ASP와 HTML로 구현되었으며, 강의 자료 및 학생 자료는 MS SQL-Server로 관리되도록 구현하였다.
최근에는 ICT기술을 학습에 도입한 학습관리시스템이 학생들의 자기주도 학습능력을 향상시키는데 도움을 주고 있다. 학습관리시스템을 활용한 자기주도 학습은 학습자원의 효율적인 활용과 의사소통 확산의 장점을 중심으로 학습자의 학습참여를 촉진시키고 흥미를 유발시켜준다. 본 연구에서는 학습관리시스템을 활용한 자기주도 학습이 초등학생의 학습동기와 학업성취취도에 미치는 영향에 대해 알아보았다. 학습자들은 제안한 학습관리시스템의 알고리즘을 통해 자신의 수준에 맞는 문제를 학습하므로 효과적인 학업 성취를 달성할 수 있을 것이다. 연구를 위하여 S초등학교 21명에 대한 제안한 학습관리시스템을 활용한 수업을 8주 동안 매주 2차시씩 총 16차 시를 진행하였다. 연구결과로 실험에 참여한 학습자의 학습지향성과 흥미 영역에 유의미한 향상을 보였다.
다양한 모바일 기기의 보급 확산으로 u러닝 기반의 학습 관리 시스템의 연구가 활발히 진행 되고 있다. u-러닝 기반의 학습 관리 시스템은 콘텐츠 사용자의 접근 시간과 장소 그리고 다양한 접근 기기에 대한 제약이 없다는 점에서 매우 편리하다. 그러나 사용자에 대한 접근의 인증과 학습에 대한 집중 여부에 대한 판단이 매우 어렵다. 본 논문은 일반적인 사용자 이벤트 중심의 인터페이스가 아닌 음성과 사용자 안면 캡춰 인터페이스를 학습 관리 시스템에 적용 하였다. 사용자가 학습 관리 시스템에 접근 시 등록된 본인의 패스워드를 음성 입력하여 로그인 하고, 사용자가 콘텐츠를 통해 학습이 진행 되는 과정에서도 간단한 단어의 응답 발화를 통해 사용자의 학습 태도 및 학습 성과를 판단하게 한다. 제안된 학습 관리 시스템의 평가 결과 사용자의 학습 성취도와 집중도가 향상 되었으며 이에 따른 사용자의 비정상적인 학습태도에 대한 관리자의 모니터링을 가능 하게 했다.
Academic analytics guides university decision-makers to assign limited resources more effectively. Especially, diverse academic courses clustered by the usage patterns and levels on Learning Management System(LMS) help understanding instructors' pedagogical approach and the integration level of technologies. Further, the clustering results can contribute deciding proper range and levels of financial and technical supports. However, in spite of diverse analytic methodologies, clustering analysis methods often provide different results. The purpose of this study is to present implications by using three different clustering analysis including Gaussian Mixture Model, K-Means clustering, and Hierarchical clustering. As a case, we have clustered academic courses based on the usage levels and patterns of LMS in higher education using those three clustering techniques. In this study, 2,639 courses opened during 2013 fall semester in a large private university located in South Korea were analyzed with 13 observation variables that represent the characteristics of academic courses. The results of analysis show that the strengths and weakness of each clustering analysis and suggest that academic leaders and university staff should look into the usage levels and patterns of LMS with more elaborated view and take an integrated approach with different analytic methods for their strategic decision on development of LMS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.