• Title/Summary/Keyword: LMI-based $H_{\infty}$ Servo Control

Search Result 9, Processing Time 0.022 seconds

Design of an LMI- Based H^{\infty} Servo Controller for Tandem Cold Mill (LMI 에 기초한 연속 냉간압연기의 H^{\infty} 서보 제어기 설계)

  • Kim, In-Soo;Hwang, I-Cheol;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 2000
  • In this paper, we design a H^\infty servo controller for gauge control of tandem cold mill. To improve the performance of the AGC(Aotomatic Gauge Control) system based on the Taylor linearized model of tandem cold mill, the H^\infty servo controller is designed to satisfy robust stability, disturbance attenuation and robust tracking properties. The H^\infty servo controller problem is modified as an usual H^\infty control problem, and the solvability condition of the H^\infty servo problem depends on the solvability of the modified H^\infty control problem. Since this modified problem does not satisfied standard assumptions for the H^\infty control problem, it is solved by an LMI(Linear Matrix Inequality) technique. Consequently, the comparison between the H^\infty servo controller and the existing PID/FF(FeedForward) controller shows the usefulness of this study.

  • PDF

Robust Depth and Course Control of AUV Using LMI-based $H_{\infty}$ Servo Control (LMI에 기초한 $H_{\infty}$ 서보제어를 이용한 AUV의 강인한 자동 심도 및 방향제어)

  • 양승윤;김인수;이만형
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • In this paper, robust depth and course controllers of AUV(autonomous underwater vehicles) using LMI-based H$_{\infty}$ servo control are proposed. The $H_{\infty}$ servo problem is modified to an $H_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The robust depth and course controllers are designed to be satisfied the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under sea wave and tide disturbances. The performances of the designed controllers are evaluated by computer simulations, and these simulation results show the applicability of the proposed robust depth and course controller.

  • PDF

$H_\infty$ Depth Controller Design for Underwater Vehicles (수중운동체의 $H_\infty$ 심도제어기 설계)

  • 이만형;정금영;김인수;주효남;양승윤
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

A Synthesis for Robust Servo System Based on Mixed $H_2/H_{\infty}$ Control

  • Park, Yeon-Wook;Lee, Kum-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.88-91
    • /
    • 1999
  • The purpose of this paper is to propose an approach to design a robust servo controller based on the Mixed H$_2$/H$\sub$$\infty$/ theory. In order to do this, we first modify the generalized plant for the usual H$\sub$$\infty$/ servo problem to a structure of the Mixed H$_2$/H$\sub$$\infty$/ minimization problem by virtue of the internal model principle. By doing this, we can divide specifications adopted for robust servo system design into H$_2$and H$\sub$$\infty$/ performance criteria, respectively. Then, the mixed H$_2$/H$\sub$$\infty$/ problem is solved in order to find the best solution, by which we can minimize H$_2$-norm of the transfer function under the condition of H$\sub$$\infty$/-norm value, through Linear Matrix Equality (LMI).

  • PDF

Robust Servo System Design by $H_2/H_{\infty}$ Control - Application to Three Inertia Benchmark Problem- (혼합 $H_2/H_{\infty}$제어에 의한 강인한 서보시스템의 설계 -3관성 벤치마크문제의 해법 -)

  • Choe, Yeon-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.148-156
    • /
    • 2005
  • The purpose of this paper is to propose an approach to design a robust servo controller based on the mixed $H_2/H_{\infty}$ theory, and confirm its validity by applying to a benchmark problem. First, the existing $H_{\infty}$ servo problem is modified to a structure for the mixed $H_2/H_{\infty}$ control problem by virtue of the internal model principle. By making use of proposed structure, we can divide specifications required in the robust servo system design into $H_2$ and $H_{\infty}$ performance criteria, respectively. It is shown that the proposed design approach is quite effective through an application to a three inertia benchmark problem.

  • PDF

Vibration Suppression Control of 3-mass Inertia System by using LMI Theory

  • Choe, Yeon-Wook;Lee, Hyung-Ki
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.129-132
    • /
    • 2001
  • she purpose of this paper is to propose an approach to suppress the vibration of three-mass inertia system based on the LMI theory. and confirm its validity through simulations under the condition of parameter variation. First, the existing $H_{\infty}$ servo problem is modified to a structure to which the LMI theory can be applied by virtue of the interval model principle. By adopting this structure, we can divide given specifications fur the vibration suppression problem into $H_2$and $H_{\infty}$ performance criteria. The results of simulation for the three-mass inertia system show that the proposed design approach is quite effective.

  • PDF

A Study on the Control Model Identification and H(sub)$\infty$ Controller Design for Trandem Cold Mills

  • Lee, Man-Hyung;Chang, Yu-Shin;Kim, In-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.847-858
    • /
    • 2001
  • This paper considers the control model identification and H(sub)$\infty$ controller design for a tandem cold mill (TCM). In order to improve the performance of the existing automatic gauge control (AGC) system based on the Taylor linearized model of the TCM, a new mathematical model that can complement the Taylor linearized model is constructed by using the N4SID algorithm based on subspace method and the least squares algorithm based on ARX model. It is shown that the identified model had dynamic characteristics of the TCM than the existing Taylor linearized model. The H(sub)$\infty$ controller is designed to have robust stability to the system parameters variation, disturbance attenuation and robust tracking capability to the set-up value of strip thickness. The H(sub)$\infty$ servo problem is formulated and it is solved by using LMI (linear matrix inequality) techniques. Simulation results demonstrate the usefulness and applicability of the proposed H(sub)$\infty$ controller.

  • PDF

Dynamic Positioning Control System Design for Surface Vessel: Observer Design Based on H Control Approach (수상선박의 위치 및 자세제어시스템 설계에 관한 연구 : 강인제어기법에 의한 관측기 설계)

  • Kim, Young-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1171-1179
    • /
    • 2012
  • In this study, we consider a dynamic positioning system (DPS) design problem that can be extended to many application fields. Toward this end, tracking and positioning control problems are discussed. In particular, we design a tracking control system that incorporates an observer based on the 2-DOF servo system design approach in order to obtain the desired state information. In the case of observer design, a weighted $H_{\infty}$ error bound approach for a state estimator is considered. Based on an algebraic Riccati equation (inequality) approach, a necessary and sufficient condition for the existence of a full-order estimator that satisfies the weighted $H_{\infty}$ error bound is introduced. The condition for the existence of the estimator is denoted by a linear matrix inequality (LMI) that yields an optimized solution and the observer gain.

Tracking Control System Design for the Transfer Crane : Design of Full-order Observer with Weighted $H_{\infty}$ Error Bound (트랜스퍼 크레인의 이송위치제어를 위한 서보계 설계 : 가중 $H_{\infty}$ 오차사양을 만족하는 동일차원 관측기 설계)

  • Kim, Y.B.;Jeong, H.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.42-49
    • /
    • 2008
  • The most important job in the container terminal area is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. Especially, in this paper, the system modelling and tracking control approach are discussed. And, we design the tracking control system incorporating an observer based on the 2DOF servo system design approach to obtain the desired state informations. In the case of observer design, a weighted $H_{\infty}$ error bound approach for a state estimator is considered. Based on an algebraic Riccati equation(inequality) approach, a necessary and sufficient condition for the existence of a full-order estimator which satisfies the weighted $H_{\infty}$ error bound is introduced. Where, the condition for existence of the estimator is denoted by a Linear Matrix Inequality(LMI) which gives an optimized solution and observer gain. Based on this result, we apply it to the tracking control system design for the transfer crane.

  • PDF