• Title/Summary/Keyword: LLC Resonant Converter

Search Result 273, Processing Time 0.032 seconds

Design of Power Supply for Green PC using Low Voltage High Current LLC Resonant Converter (저전압 대전류 LLC 공진형 컨버터를 이용한 그린 PC용 전원공급장치 설계)

  • Yoo, Young-Do;Kim, In-Dong;Nho, Eui-Cheol;Ryu, Myung-Hyo;Baek, Ju-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.211-219
    • /
    • 2014
  • This paper proposes a low voltage high current LLC resonant converter for Green PC. Green PC is composed of a lot of blade PCs, and it is a centralized system to manage them in computer center. Green PC should require that its power supplies have several characteristics such as low output voltage, high output current, and high power conversion efficiency. Conventional PSFB (Phase Shift Full Bridge) converter is usually used as DC/DC converter for computer power supply because it has high power conversion efficiency thanks to ZVS (Zero Voltage Switching) operation under middle and high load conditions. However, this converter has some problems such as large switching noise and limitation of ZVS operation under light load condition. In order to improve the performance of power supply for Green PC, a new power supply using popular high efficiency LLC resonant converter for low voltage and high current application is proposed in this paper. The proposed power supply has ZVS capability over the entire load range, thus resulting in good efficiency and high switching frequency. Experimental results verify the performance of the proposed power supply for Green PC using 2[kW] (19[V], 105[A]) rated prototype converter.

Design and Experimental Verification of LLC Resonant Converter with High Efficiency and High Power Density for 8kW Isolated ESS System (8kW급 절연형 ESS시스템을 위한 고효율 및 높은 전력밀도를 갖는 LLC 공진형 컨버터 설계 및 실험적 검증)

  • Kim, Jinwoo;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.181-182
    • /
    • 2017
  • In the battery system, an isolated converter is used for the stability of the system when controlling the charge and discharge of the battery. A fixed frequency LLC converter which is a type of isolated converter, has the advantage of high efficiency and power density with zero voltage switching at high frequency. Therefore, in this paper, the operation analysis, design and experimental verification of the LLC resonant converter with high efficiency and high power density for the ESS system were conducted.

  • PDF

The Output Characteristics of Low Repetition·High Power Nd:YAG Laser Using LLC Resonant Converter (LLC 공진형 컨버터를 활용한 저 반복·고출력 Nd:YAG 레이저의 출력특성)

  • Lee, Hee-Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.286-291
    • /
    • 2015
  • LLC resonant converter is used to control laser output power in Nd:YAG laser. Zero voltage switching (ZVS) is implemented to minimize the switching loss which is adopting the LLC resonant converter. In the spot welding processing of metal thin films, the processing quality is decided by the laser beam output energy of single pulse. We decide to the 50 [J] as the single pulse laser beam energy. Laser output power is investigated and experimented by changing the output current. That current is controled by the charging voltage of capacitor. From those results, we obtained the maximum laser output of 58.2 [J] and the conversion efficiency of 2.52% at the discharge voltage of 620V and the discharge current of 861 [A] and the pulse repetition rate of 1 [Hz] at the charging capacitor of 12,000 [${\mu}F$].

LLC Resonant Converter with Auxiliary Switches Operating Over A Wide Output Voltage Range (넓은 입·출력전압 범위에서 제어 가능한 보조스위치 적용 LLC 공진컨버터)

  • Lee, Ji-Cheol;Kim, Min-Ji;Oh, Jae-Sung;Kim, Eun-Soo;Kook, Yoon-Sang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.256-264
    • /
    • 2018
  • This paper proposes a three-bridge LLC resonant converter with auxiliary switches for a wide output voltage control range. This converter can be controlled in two ways to achieve a wide controllable output voltage control range of $V_o$ to $3V_o$. The first control mechanism is achieved through the pulse width modulation (PM) of the auxiliary switches and primary switching devices, while the second control mechanism is achieved through the frequency modulation (FM) of the primary switching devices that are configured to operate in the full-bridge switching mode when the auxiliary switches are turned off. The feasibility of using the proposed converter is verified by the results of an experiment with a 2kW prototype.

A High Efficiency LLC Resonant Converter-based Li-ion Battery Charger with Adaptive Turn Ratio Variable Scheme

  • Choi, Yeong-Jun;Han, Hyeong-Gu;Choi, See-Young;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.124-132
    • /
    • 2018
  • This paper proposes an LLC resonant converter based battery charger which utilizes an adaptive turn ratio scheme to achieve a wide output voltage range and high efficiency. The high frequency transformer of the LLC converter of the proposed strategy has an adaptively changed turn ratio through the auxiliary control circuit. As a result, an optimized converter design with high magnetizing inductance is possible, while minimizing conduction and turn-off losses and providing a regulated voltage gain to properly charge the lithium ion battery. For a step-by-step explanation, operational principle and optimal design considerations of the proposed converter are illustrated in detail. Finally, the effectiveness of the proposed strategy is verified through various experimental results and efficiency analysis based on prototype 300W Li-ion battery charger and battery pack.

Modeling, Dynamic Analysis and Control Design of Full-Bridge LLC Resonant Converters with Sliding-Mode and PI Control Scheme

  • Zheng, Kai;Zhang, Guodong;Zhou, Dongfang;Li, Jianbing;Yin, Shaofeng
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.766-777
    • /
    • 2018
  • In this paper, a sliding mode and proportional plus integral (SM-PI) control combined with self-sustained phase shift modulation (SSPSM) for LLC resonant converters is presented. The proposed control scheme improves the transient response while preserving good steady-state performance. An averaged large signal model of an LLC converter with the ZVS modulation technique is developed for the SM control design. The sliding surface is obtained based on the input-output linearization concept. A system identification method is adopted to obtain the transform function of the LLC resonant converter, which is used to design the PI control. In order to reduce the inherent chattering problem in the steady state, the combined SM-PI control strategy is derived with fuzzy control, where the SM control is responsive during the transient state while the PI control prevails in the steady state. The combination of SSPSM and the SM-PI control provides ZVS operation, robustness and a fast transient response against step load variations. Simulation and experimental results validate the theoretical analysis and the attractive features of the proposed scheme.

A Study on Full Bridge and Half Bridge Mode Transition Method of LLC Resonant Converter for Wide Input and Output Voltage Condition (넓은 입출력 전압을 위한 LLC 공진형 컨버터의 풀 브리지-하프 브리지 모드 변환 기법 연구)

  • Choe, Min-Yeong;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Kang, Jeong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.356-366
    • /
    • 2022
  • This paper presents a mode transition method that applies frequency compensation technique of an LLC resonant converter for stable mode transition. LLC resonant converters used in various applications require high efficiency and high power density. However, because of circuit property, a wider voltage gain range equates to a greater circuit loss, so maintaining high efficiency at all voltage gain ranges is difficult. In this case, full bridge-half bridge mode transition method can be used, which maintains high efficiency even in a wide voltage gain range. However, this method causes damage to the circuit through overcurrent by the mode transition. This study analyzes the cause of the problem and proposes a mode transition method that applies frequency compensation technique to solve the problem. The proposed method verifies the stable transition through simulation analysis and experimental results.

Common Mode Noise Reduction for an LLC Resonant Converter by Using Passive Noise Cancellation

  • Ryu, Younggon;Kim, Sungnam;Jeong, Geunseok;Park, Jaesu;Kim, Duil;Park, Jongwook;Kim, Jingook;Han, Ki Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • This paper describes the application of a passive noise cancellation method to a prototype inductor-inductor-capacitor (LLC) resonant converter by placing a compensation winding in a transformer to reduce common mode noise. The connection method for the compensation winding is investigated. A circuit analysis is implemented for the displacement currents between the primary and secondary windings in the transformer. The analyzed displacement currents are verified by performing a circuit simulation and a proper compensation winding connection that reduces common mode noise is found. The measurement results show that common mode noise is reduced effectively up to 20 dB in the 1 to 7 MHz frequency region for the prototype LLC resonant converter by using the proposed passive noise cancellation method.

Design Considerations of Resonant Network and Transformer Magnetics for High Frequency LLC Resonant Converter

  • Park, Hwa-Pyeong;Ryu, Younggon;Han, Ki Jin;Jung, Jee-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.383-392
    • /
    • 2016
  • This paper proposes the design considerations of resonant network and transformer magnetics for 500 kHz high switching frequency LLC resonant converter. The high power density can be effectively achieved by adopting high switching frequency which allows small size passive components in the converter. The design methodology of magnetizing inductance is derived for zero voltage switching (ZVS) condition, and the design methodology of the transformer and output capacitance is derived to achieve high power density at high operating frequency. Moreover, the structure of transformer is analyzed to obtain the proper inductance value for high switching operation. To verify the proposed design methodology, simulation and experimental results will be presented including temperature of passive and active components, and power conversion efficiency to evaluate dominant power loss. In addition, the validity of magnetics design will be evaluated with operating waveforms of the prototype converter.

Novel Driving Scheme for Secondary-side Synchronous Rectifiers of LLC Resonant Converter (LLC 공진형 컨버터의 동기정류기의 새로운 구동 방법)

  • Kim, Myungbok;Kwak, Bong-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.413-414
    • /
    • 2013
  • An LLC resonant converter is widely used due to many advantages over others. However, it is still not used in high current applications because it is difficult to drive the synchronous rectifiers. In this paper, a novel gate driving sheme for secondary-side synchronous rectifiers is introduced and its simulation results are also presented

  • PDF