• Title/Summary/Keyword: LIX63

Search Result 6, Processing Time 0.023 seconds

Solvent Extraction of Zirconium and Hafnium from Hydrochloric Acid solution by LIX 63 and Cyanex 301 (염산용액(鹽酸溶液)에서 LIX 63 및 Cyanex 301에 의한 지르코늄과 하프늄의 용매추출(溶媒抽出))

  • Min, Soo-Hwan;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.19-25
    • /
    • 2013
  • Solvent extraction experiments have been conducted to separate Zr(IV) and Hf(IV) from chloride solutions by using LIX63 and Cyanex301. Zr and Hf were extracted by cation exchange reaction in the pH range from 1 to 4 by the extratants. Since the extraction percentage of the two metals was similar to each other, it was difficult to separate the two metals by using LIX63 or Cyanex301. Use of a mixture of LIX63/TBP or Cyanex301/TBP resulted in antagonism in our experimental ranges. Our data showed that there is some possibility of separating the two metals by the mixture of Cyanex301 and TBP because the extraction percentage of Hf decreased more rapidly than that of Zr as HCl concentration was decreased. The mixture of LIX63 and Cyanex301 had little effect on the separation of the two metals.

Solvent Extraction for the Separation of Pd(II), Pt(IV), Ir(IV) and Rh(III) from 3 M Hydrochloric Acid Solution (3 M의 염산용액에서 팔라듐(II), 백금(IV), 이리듐(IV) 및 로듐(III)의 분리를 위한 용매추출)

  • Nguyen, Thi Hong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.26-31
    • /
    • 2017
  • LIX 63 showed a selectivity for the extraction of Pd(II) over other PGMs, such as Pt(IV), Ir(IV) and Rh(III) from 6 M HCl solution. Moreover, HCl solution has significant effect on the oxidation-reduction reaction between Ir(IV) and LIX 63. Therefore, the applicability of employing LIX 63 for the separation of the 4 PGMs was investigated from 3 M HCl solution. From 3 M HCl solution, only Pd(II) was selectively extracted by LIX 63 and its extraction percentage was higher than from 6 M HCl solution. Extraction of the Pd(II) free raffinate with TBP led to the selective extraction of Pt(IV). After oxidation of Ir(III) with $NaClO_3$ to Ir(IV), extraction of the Pt(IV) free raffinate with Aliquat 336 selectively extracted Ir(IV). For each extraction step, optimum stripping conditions were obtained. By this process, it was possible to separate the 4 PGMs by solvent extraction from 3 M HCl solution.

Solvent Extraction of Hydrochloric Acid Using Commercial Extractants and Synthesized Ionic Liquids (상용화 추출제 및 이온성액체에 의한 염산의 용매추출)

  • Nguyen, Viet Nhan Hoa;Lee, Man Seung
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.79-87
    • /
    • 2020
  • The extraction and stripping of HCl from aqueous solutions by commercial extractants like LIX 63 and its mixture with TEHA/ Cyanex 923/ Aliquat 336 and ionic liquids like ALi-SCN, ALi-PC in kerosene was investigated. Among these extractants, ALi-PC showed the best extraction effectivity (above 80%), but it was difficult to strip HCl from the loaded phase. Although the extraction percentage of HCl by LIX 63 was not high, the stripping performance was above 81%. The addition of octanol to the organic phase led to negative effect on the extraction performance of HCl. The addition of C2H5OH into aqueous solutions significantly increased the extraction and stripping percentage of HCl by LIX 63, ALi-PC and ALi-SCN.

Solvent Extraction of Zr(IV) and Hf(IV) from Sulfuric Acid Solutions by Acidic Extractants and Their Mixtures with TBP (황산용액에서 양이온계 추출제 및 TBP와의 혼합추출제에 의한 지르코늄(IV)과 하프늄(IV)의 용매추출)

  • Wang, Ling Yun;Lee, Man Seung
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.3-9
    • /
    • 2016
  • Separation of Zr(IV) and Hf(IV) from sulfuric acid solutions was investigated by extraction with several acidic extractants such as Versatic acid, LIX 63, and Cyanex 301. From strong sulfuric acid solutions, the separation of Zr(IV) and Hf(IV) by Versatic acid and LIX 63 was not possible, while selective extraction of Hf(IV) over Zr(IV) was obtained with Cyanex 301. However, the extraction percentage of the two metals was much lower compared to that by D2EHPA. Mixing of TBP with Cyanex 301 and D2EHPA led to negative effect on the extraction and separation of the two metal ions. The difference in the extraction reaction and separation selectivity between HCl, $HNO_3$ and $H_2SO_4$ media with each extractant was discussed.

Separation of Platinum(IV) and Rhodium(III) from Acidic Chloride Solution by Solvent Extraction with Tri 2-Ethylhexyl Amine(TEHA) (염산용액(鹽酸溶液)에서 Tri 2-Ethylhexyl Amine(TEHA)에 의한 백금과 로듐의 분리(分離))

  • Sun, Pan-Pan;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.29-34
    • /
    • 2013
  • Solvent extraction experiments were performed to separate platinum and rhodium from mixed chloride solution by using tri 2-ethylhexyl amine (TEHA) and its mixture with TBP and LIX 63. Effects of extraction conditions on the separation of the two metals were investigated as a function of extractant concentration in the HCl concentration range from 1 to 9 M. The concentration of Pt (IV) and Rh(III) was controlled to $1{\times}10^{-3}M$ and $2{\times}10^{-4}M$, respectively. In the extraction with TEHA and its mixture, Pt was quantitatively extracted irrespective of HCl concentration, while the extraction percentage of Rh depended on the extraction condition. When the concentration of HCl in the mixed solution was low, the extraction of Rh was nil and separation of Pt and Rh was possible. Adding TBP to TEHA had little effect on the extraction of both metals, while adding LIX63 to TEHA favored the extraction of Rh.

Recovery of Silver from Nitrate Leaching Solution of Silicon Solar Cells (실리콘 태양전지 질산침출액에서 LIX63를 이용한 은(Ag) 회수)

  • Cho, Sung-Yong;Kim, Tae-Young;Sun, Pan-Pan
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2021
  • Spent photovoltaic module is one of the important resource of silver, while related research concerning silver recovery remains limited. In our previous research, HNO3 was utilized to dissolve Ag(I) and Al(III) from the spent silicon solar cells. In order to recover Ag(I) from the leachate of a silicon solar cell, the present study made use of a nitrate solution containing Ag(I) and Al(III), which was subjected to a solvent extraction process with 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX63). Ag(I) was selectively extracted with LIX63 over Al(III) from the nitrate leach solution. Subsequently, quantitative stripping of Ag(I) from the loaded LIX63 was performed by using 20% ammonia water. The McCabe-Thiele plots for the extraction and stripping isotherms of Ag(I) were also constructed. Extraction and stripping simulation tests confirmed an Ag(I) extraction and stripping efficiency of >99.99% and 98.9%, respectively with high purity Ag (99.998%) and Al (99.99%) solution. A process flow sheet for Ag(I) recovery from the nitrate leach solution was proposed.