• Title/Summary/Keyword: LINK16

Search Result 535, Processing Time 0.022 seconds

Real-Time Link Throughput Management Algorithms for Generalized PF Scheduling in Wireless Mobile Networks (무선이동 네트워크에서 일반화된 PF 스케줄링을 위한 실시간 링크 용량 관리 알고리즘)

  • Joung, Hee-Jin;Mun, Cheol;Yook, Jong-Gwan
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.1-9
    • /
    • 2011
  • Wireless mobile networks that exploit generalized PF scheduling can dynamically allocate network resources by using scheduling parameters. There are limitations to predict throughputs by the conventional stochastic approach in general. Moreover the limitations make it difficult to find appropriate scheduling parameters for achieving the demanded throughputs. This paper derives a prediction algorithm that predicts throughputs of the networks by using deterministic approach. A throughput adjust algorithm and a throughput switching algorithm are derived from the prediction algorithm. The performance of the throughput prediction/switching algorithms is evaluated by a simulator based on IEEE 802.16m system.

Low Frequency Current Ripple Mitigation of Two Stage Three-Phase PEMFC Generation Systems

  • Deng, Huiwen;Li, Qi;Liu, Zhixiang;Li, Lun;Chen, Weirong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2243-2257
    • /
    • 2016
  • This paper presents a two stage three-phase proton exchange membrane fuel cell (PEMFC) generation system. When the system is connected to a three-phase load, it is very sensitive to the characteristics and type of the load. Especially unbalanced three-phase loads, which result in a pulsating power that is twice the output frequency at the inverter output, and cause the dc-link to generate low frequency ripples. This penetrates to the fuel cell side through the front-end dc-dc converter, which makes the fuel cell work in an unsafe condition and degrades its lifespan. In this paper, the generation and propagation mechanism of low frequency ripple is analyzed and its impact on fuel cells is presented based on the PEMFC output characteristics model. Then a novel method to evaluate low frequency current ripple control capability is investigated. Moreover, a control scheme with bandpass filter inserted into the current feed-forward path, and ripple duty ratio compensation based on current mode control with notch filter is also proposed to achieve low frequency ripple suppression and dynamic characteristics improvement during load transients. Finally, different control methods are verified and compared by simulation and experimental results.

Pseudo Optical PAM-N Signal Using Externally Modulated Lasers

  • Huh, Joon Young;Lee, Joon Ki;Kang, Sae-Kyoung;Lee, Jyung Chan
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1120-1128
    • /
    • 2015
  • We propose a pseudo optical N-level pulse-amplitude modulation (PO PAM-N) signal using a few externally-modulated lasers (EMLs) operating at different wavelengths, which is suitable for upgrading the transmission speed over an optical link of < 10 km single-mode fiber with low-cost components. To compare a PO PAM-N signal with that of a standard optical PAM-N signal, we perform experiments for evaluating the performance of a 51.56-Gb/s PO PAM-4 signal and standard 51.56-Gb/s optical PAM-4 signal. The receiver sensitivity (at $BER=10^{-5}$) of the PO PAM-4 signal is 1.5 dB better than the receiver sensitivity of a standard optical PAM-4 signal. We also investigate the feasibility of PO PAM-N (N = 4, 8, and 16) signals operating at 103.12 Gb/s, considering relative intensity noise, timing jitter, extinction ratio (ER) of EMLs, and dispersion. From the results, a PO PAM-8 signal performs better than PO PAM-4 and PO PAM-16 signals at 103.12 Gb/s. Finally, we suggest a timing control method to suppress the effect of dispersion in a PO PAM-N signal. We show that the tolerance to dispersion of a 103.12-Gb/s PO PAM-8 signal can be improved to ${\pm}40ps/nm$ by applying a proposed scheme.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.

ADC-Based Backplane Receivers: Motivations, Issues and Future

  • Chung, Hayun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.300-311
    • /
    • 2016
  • The analog-to-digital-converter-based (ADC-based) backplane receivers that consist of a front-end ADC followed by a digital equalizer are gaining more popularity in recent years, as they support more sophisticated equalization required for high data rates, scale better with fabrication technology, and are more immune to PVT variations. Unfortunately, designing an ADC-based receiver that meets tight power and performance budgets of high-speed backplane link systems is non-trivial as both front-end ADC and digital equalizer can be power consuming and complex when running at high speed. This paper reviews the state of art designs for the front-end ADC and digital equalizers to suggest implementation choices that can achieve high speed while maintaining low power consumption and complexity. Design-space exploration using system-level models of the ADC-based receiver allows through analysis on the impact of design parameters, providing useful information in optimizing the power and performance of the receiver at the early stage of design. The system-level simulation results with newer device parameters reveal that, although the power consumption of the ADC-based receiver may not comparable to the receivers with analog equalizers yet, they will become more attractive as the fabrication technology continues to scale as power consumption of digital equalizer scales well with process.

A Routing Protocol for Improving Node Survivability in Tactical Ad-hoc Network (전술 Ad-hoc 네트워크에서 노드 생존성 향상을 위한 프로토콜 설계)

  • Kim, Young-An;Park, Gun-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • TICN, a next-generation tactical communication network based on a wireless network, acts as the backbone of the whole network. TICN requires the routing which takes both survivability of passage, reliability, and safety of wireless link into consideration. A tactical network like TICN may maintain the passage for just a short period of time due to topology's frequent changes; In this process all nodes, dependent on batteries for their necessary energy, are restricted by batteries' durability in due course. To overcome this shortcoming, the up-to-date protocols consider only either of diminishing or balancing out energy consumptions. Thus there was a limitation to enhancing both throughput and energy efficiency. The thesis proposes a protocol which regards both throughput and energy efficiency, and enhances node survivability by means of minimizing and balancing energy consumption of the whole network. The protocol brings out an improvement in throughput and makes each node's energy usage more effective.

Improved Reactive Power Sharing for Parallel-operated Inverters in Islanded Microgrids

  • Issa, Walid;Sharkh, Suleiman;Mallick, Tapas;Abusara, Mohammad
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1152-1162
    • /
    • 2016
  • The unequal impedances of the interconnecting cables between paralleled inverters in the island mode of microgrids cause inaccurate reactive power sharing when the traditional droop control is used. Many studies in the literature adopt low speed communications between the inverters and the central control unit to overcome this problem. However, the losses of this communication link can be very detrimental to the performance of the controller. This paper proposes an improved reactive power-sharing control method. It employs infrequent measurements of the voltage at the point of common coupling (PCC) to estimate the output impedance between the inverters and the PCC and then readjust the voltage droop controller gains accordingly. The controller then reverts to being a traditional droop controller using the newly calculated gains. This increases the immunity of the controller against any losses in the communication links between the central control unit and the inverters. The capability of the proposed control method has been demonstrated by simulation and experimental results using a laboratory scale microgrid.

A Novel Control Scheme for T-Type Three-Level SSG Converters Using Adaptive PR Controller with a Variable Frequency Resonant PLL

  • Lin, Zhenjun;Huang, Shenghua;Wan, Shanming
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1176-1189
    • /
    • 2016
  • In this paper, a novel quasi-direct power control (Q-DPC) scheme based on a resonant frequency adaptive proportional-resonant (PR) current controller with a variable frequency resonant phase locked loop (RPLL) is proposed, which can achieve a fast power response with a unity power factor. It can also adapt to variations of the generator frequency in T-type Three-level shaft synchronous generator (SSG) converters. The PR controller under the static α-β frame is designed to track ac signals and to avert the strong cross coupling under the rotating d-q frame. The fundamental frequency can be precisely acquired by a RPLL from the generator terminal voltage which is distorted by harmonics. Thus, the resonant frequency of the PR controller can be confirmed exactly with optimized performance. Based on an instantaneous power balance, the load power feed-forward is added to the power command to improve the anti-disturbance performance of the dc-link. Simulations based on MATLAB/Simulink and experimental results obtained from a 75kW prototype validate the correctness and effectiveness of the proposed control scheme.

Development of Hardware Simulator for Operation Analysis of DC Microgrid (DC 마이크로그리드의 동작분석을 위한 하드웨어 시뮬레이터 개발)

  • Lee, Ji-Heon;Kim, Won-Yong;Kim, Jong-Won;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.577-586
    • /
    • 2011
  • This paper describes the development of hardware simulator for the operation analysis of DC microgrid. The hardware simulator consists of several distributed power sources such as a wind power generation, solar power and fuel cell, and two energy storages such as a supercapacitor and battery. The main controller which performs a role of energy management and state monitoring is connected with the local controller in each power source and storage through ethernet-based communication link. The developed hardware simulator can be utilized to analyze the performance DC microgrid with practical manner.

Developing the Evaluation Indicator of Pedestrian Environment for Promoting Walking Activity (걷기활동 증진을 위한 보행환경 평가지표의 개발)

  • Park, Kyung-Hun;Park, Jong-Wan;Jung, Sung-Gwan;You, Ju-Han
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1231-1238
    • /
    • 2007
  • The promotion of walking and bicycling is recently a hot topic in the urban planning and design field. Many planners have already examined the many components of the land use-transportation connection and built environment-physical activity link. A rapidly growing area of urban form research is to measure the level of walk-ability in urban environments. With this background, this research conducted a preliminary study to develop the evaluation indicators of pedestrian environments. Based on the literature reviews on walking or pedestrian environments, we proposed the seventeen indicators related with pedestrian facilities, road attributes and walking environment. We also performed a questionary survey to evaluate the satisfaction of their neighborhood pedestrian environments for 302 randomly selected adults living in the City of Changwon, Gyeongsangnam-do. Finally, this research provided the valid model to evaluate the effects of physical environmental factors on the walking satisfaction using factor analysis and multiple regression analysis.