• Title/Summary/Keyword: LIDAR-based

Search Result 226, Processing Time 0.026 seconds

3D Track Models Generation and Applications Based on LiDAR Data for Railway Route Management (철도노선관리에서의 LIDAR 데이터 기반의 3차원 궤적 모델 생성 및 적용)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1099-1104
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF

The Technique of Human tracking using ultrasonic sensor for Human Tracking of Cooperation robot based Mobile Platform (모바일 플랫폼 기반 협동로봇의 사용자 추종을 위한 초음파 센서 활용 기법)

  • Yum, Seung-Ho;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.638-648
    • /
    • 2020
  • Currently, the method of user-follwoing in intelligent cooperative robots usually based in vision system and using Lidar is common and have excellent performance. But in the closed space of Corona 19, which spread worldwide in 2020, robots for cooperation with medical staff were insignificant. This is because Medical staff are all wearing protective clothing to prevent virus infection, which is not easy to apply with existing research techniques. Therefore, in order to solve these problems in this paper, the ultrasonic sensor is separated from the transmitting and receiving parts, and based on this, this paper propose that estimating the user's position and can actively follow and cooperate with people. However, the ultrasonic sensors were partially applied by improving the Median filter in order to reduce the error caused by the short circuit in communication between hard reflection and the number of light reflections, and the operation technology was improved by applying the curvature trajectory for smooth operation in a small area. Median filter reduced the error of degree and distance by 70%, vehicle running stability was verified through the training course such as 'S' and '8' in the result.

Dense-Depth Map Estimation with LiDAR Depth Map and Optical Images based on Self-Organizing Map (라이다 깊이 맵과 이미지를 사용한 자기 조직화 지도 기반의 고밀도 깊이 맵 생성 방법)

  • Choi, Hansol;Lee, Jongseok;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.283-295
    • /
    • 2021
  • This paper proposes a method for generating dense depth map using information of color images and depth map generated based on lidar based on self-organizing map. The proposed depth map upsampling method consists of an initial depth prediction step for an area that has not been acquired from LiDAR and an initial depth filtering step. In the initial depth prediction step, stereo matching is performed on two color images to predict an initial depth value. In the depth map filtering step, in order to reduce the error of the predicted initial depth value, a self-organizing map technique is performed on the predicted depth pixel by using the measured depth pixel around the predicted depth pixel. In the process of self-organization map, a weight is determined according to a difference between a distance between a predicted depth pixel and an measured depth pixel and a color value corresponding to each pixel. In this paper, we compared the proposed method with the bilateral filter and k-nearest neighbor widely used as a depth map upsampling method for performance comparison. Compared to the bilateral filter and the k-nearest neighbor, the proposed method reduced by about 6.4% and 8.6% in terms of MAE, and about 10.8% and 14.3% in terms of RMSE.

Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar (연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현)

  • Kim, Kyeong-min;Kim, Seong-jin;NamKoong, Ho-jung;Jung, Yun-ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.211-218
    • /
    • 2022
  • Continuous wave (CW) radar has the advantage of reliability and accuracy compared to other sensors such as camera and lidar. In addition, binarized neural network (BNN) has a characteristic that dramatically reduces memory usage and complexity compared to other deep learning networks. Therefore, this paper proposes binarized neural network based human identification and motion classification system using CW radar. After receiving a signal from CW radar, a spectrogram is generated through a short-time Fourier transform (STFT). Based on this spectrogram, we propose an algorithm that detects whether a person approaches a radar. Also, we designed an optimized BNN model that can support the accuracy of 90.0% for human identification and 98.3% for motion classification. In order to accelerate BNN operation, we designed BNN hardware accelerator on field programmable gate array (FPGA). The accelerator was implemented with 1,030 logics, 836 registers, and 334.904 Kbit block memory, and it was confirmed that the real-time operation was possible with a total calculation time of 6 ms from inference to transferring result.

A Study on Construction & Management of Urban Spatial Information Based on Digital Twin (디지털트윈 기반의 도시 공간정보 구축 및 관리에 관한 연구)

  • Lih, BongJoo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • The Seoul Metropolitan Government is building and operating digital twin-based urban spatial information to solve various problems in the city and provide public services. Two essential factors to ensure the stable utilization of spatial information for the implementation of such a digital twin city are the latest and quality of the data. However, it is time-consuming and costly to maintain continuous updating of high-quality urban spatial information. To overcome this problem, we studied efficient urban spatial information construction technology and the operation, management, and update procedures of construction data. First, we demonstrated and applied automatic 3D building construction technology centered on point clouds using the latest hybrid sensors, confirmed that it is possible to automatically construct high-quality building models using high-density airborne lidar results, and established an efficient data management plan. By applying differentiated production methods by region, supporting detection of urban change areas through Seoul spatial feature identifiers, and producing international standard data by level, we strengthened the utilization of urban spatial information. We believe that this study can serve as a good precedent for local governments and related organizations that are considering activating urban spatial information based on digital twins, and we expect that discussions on the construction and management of spatial information as infrastructure information for city-level digital twin implementation will continue.

Study on Structure Visual Inspection Technology using Drones and Image Analysis Techniques (드론과 이미지 분석기법을 활용한 구조물 외관점검 기술 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Rhim, Hong-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.545-557
    • /
    • 2017
  • The study is about the efficient alternative to concrete surface in the field of visual inspection technology for deteriorated infrastructure. By combining industrial drones and deep learning based image analysis techniques with traditional visual inspection and research, we tried to reduce manpowers, time requirements and costs, and to overcome the height and dome structures. On board device mounted on drones is consisting of a high resolution camera for detecting cracks of more than 0.3 mm, a lidar sensor and a embeded image processor module. It was mounted on an industrial drones, took sample images of damage from the site specimen through automatic flight navigation. In addition, the damege parts of the site specimen was used to measure not only the width and length of cracks but white rust also, and tried up compare them with the final image analysis detected results. Using the image analysis techniques, the damages of 54ea sample images were analyzed by the segmentation - feature extraction - decision making process, and extracted the analysis parameters using supervised mode of the deep learning platform. The image analysis of newly added non-supervised 60ea image samples was performed based on the extracted parameters. The result presented in 90.5 % of the damage detection rate.

Real-Time Traffic Information and Road Sign Recognitions of Circumstance on Expressway for Vehicles in C-ITS Environments (C-ITS 환경에서 차량의 고속도로 주행 시 주변 환경 인지를 위한 실시간 교통정보 및 안내 표지판 인식)

  • Im, Changjae;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.55-69
    • /
    • 2017
  • Recently, the IoT (Internet of Things) environment is being developed rapidly through network which is linked to intellectual objects. Through the IoT, it is possible for human to intercommunicate with objects and objects to objects. Also, the IoT provides artificial intelligent service mixed with knowledge of situational awareness. One of the industries based on the IoT is a car industry. Nowadays, a self-driving vehicle which is not only fuel-efficient, smooth for traffic, but also puts top priority on eventual safety for humans became the most important conversation topic. Since several years ago, a research on the recognition of the surrounding environment for self-driving vehicles using sensors, lidar, camera, and radar techniques has been progressed actively. Currently, based on the WAVE (Wireless Access in Vehicular Environment), the research is being boosted by forming networking between vehicles, vehicle and infrastructures. In this paper, a research on the recognition of a traffic signs on highway was processed as a part of the awareness of the surrounding environment for self-driving vehicles. Through the traffic signs which have features of fixed standard and installation location, we provided a learning theory and a corresponding results of experiment about the way that a vehicle is aware of traffic signs and additional informations on it.

A Hybrid Approach for Automated Building Area Extraction from High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 자동화된 건물 영역 추출 하이브리드 접근법)

  • An, Hyowon;Kim, Changjae;Lee, Hyosung;Kwon, Wonsuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.545-554
    • /
    • 2019
  • This research aims to provide a building area extraction approach over the areas where data acquisition is impossible through field surveying, aerial photography and lidar scanning. Hence, high-resolution satellite images, which have high accessibility over the earth, are utilized for the automated building extraction in this study. 3D point clouds or DSM (Digital Surface Models), derived from the stereo image matching process, provides low quality of building area extraction due to their high level of noises and holes. In this regards, this research proposes a hybrid building area extraction approach which utilizes 3D point clouds (from image matching), and color and linear information (from imagery). First of all, ground and non-ground points are separated from 3D point clouds; then, the initial building hypothesis is extracted from the non-ground points. Secondly, color based building hypothesis is produced by considering the overlapping between the initial building hypothesis and the color segmentation result. Afterwards, line detection and space partitioning results are utilized to acquire the final building areas. The proposed approach shows 98.44% of correctness, 95.05% of completeness, and 1.05m of positional accuracy. Moreover, we see the possibility that the irregular shapes of building areas can be extracted through the proposed approach.

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.

Analysis of Vertical Profiles and Optical Characteristics of the Asian Dust Using Ground-based Measurements (지상관측장비를 이용하여 관측한 봄철 황사의 연직분포와 광학적 특성 분석)

  • Lee, Byung-Il;Yoon, Soon-Chang;Kim, Yoonjae
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.287-297
    • /
    • 2008
  • The vertical profiles and optical properties of Asian dust are investigated using ground-based measurements from 1998 to 2002. Vertical profiles of aerosol extinction coefficient are evaluated using MPL (Micro Pulse Lidar) data. Optical parameters such as aerosol optical thickness ($\tau$), ${\AA}ngstr\ddot{o}m$ exponent ($\alpha$), single scattering albedo ($\omega$), refractive index, and volume size distribution are analyzed with sun/sky radiometer data for the same period. We can separate aerosol vertical profiles into three categories. First category named as 'Asian dust case', which aerosol extinction coefficient is larger than $0.15km^{-1}$ and dust layer exists from surface up to 3-4km. Second category named as 'Elevated aerosol case', which aerosol layer exists between 2 and 6km with 1-2.5km thickness, and extinction coefficient is smaller than $0.15km^{-1}$. Third category named as 'Clear sky case', which aerosol extinction coefficient appears smaller than $0.15km^{-1}$. and shows that diurnal variation of background aerosol in urban area. While optical parameters for first category indicate that $\tau$ and $\alpha$ are $0.63{\pm}0.14$, $0.48{\pm}0.19$, respectively. Also, aerosol volume concentration is increased for range of 1 and $4{\mu}m$, in coarse mode. Optical parameters for second category can be separated into two different types. Optical properties of first type are very close to Asian dust cases. Also, dust reports of source region and backward trajectory analyses assure that these type is much related with Asian dust event. However, optical properties of the other type are similar to those of urban aerosol. For clear sky case, $\tau$ is relatively smaller and $\alpha$ is larger compare with other cases. Each case shows distinct characteristics in aerosol optical parameters.