• Title/Summary/Keyword: LIDAR-based

Search Result 226, Processing Time 0.029 seconds

Performance Assessment of a LIDAR Data Segmentation Method based on Simulation (시뮬레이션을 이용한 라이다 데이터 분할 기법의 성능 평가)

  • Kim, Seong-Joon;Lee, Im-Pyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.231-233
    • /
    • 2010
  • Many algorithms for processing LIDAR data are being developed for diverse applications not limited to patch segmentation, bare-earth filtering and building extraction. However, since we cannot exactly know the true locations of LIDAR points, it is difficult to assess the performance of a LIDAR data processing algorithm. In this paper, we thus attempted the performance assessment of the segmentation algorithm developed by Lee (2006) using the LIDAR data generated through simulation based on sensor modelling. Consequently, based on simulation, we can perform the performance assessment of a LIDAR processing algorithm more objectively and quantitatively with an automatic procedure.

  • PDF

Complexity Estimation Based Work Load Balancing for a Parallel Lidar Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2009
  • LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.

Performance Improvement of Pedestrian Detection using a GM-PHD Filter (GM-PHD 필터를 이용한 보행자 탐지 성능 향상 방법)

  • Lee, Yeon-Jun;Seo, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.150-157
    • /
    • 2015
  • Pedestrian detection has largely been researched as one of the important technologies for autonomous driving vehicle and preventing accidents. There are two categories for pedestrian detection, camera-based and LIDAR-based. LIDAR-based methods have the advantage of the wide angle of view and insensitivity of illuminance change while camera-based methods have not. However, there are several problems with 3D LIDAR, such as insufficient resolution to detect distant pedestrians and decrease in detection rate in a complex situation due to segmentation error and occlusion. In this paper, two methods using GM-PHD filter are proposed to improve the poor rates of pedestrian detection algorithms based on 3D LIDAR. First one improves detection performance and resolution of object by automatic accumulation of points in previous frames onto current objects. Second one additionally enhances the detection results by applying the GM-PHD filter which is modified in order to handle the poor situation to classified multi target. A quantitative evaluation with autonomously acquired road environment data shows the proposed methods highly increase the performance of existing pedestrian detection algorithms.

Organizing Lidar Data Based on Octree Structure

  • Wang, Miao;Tseng, Yi-Hsing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.150-152
    • /
    • 2003
  • Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.

  • PDF

Information Fusion of Photogrammetric Imagery and Lidar for Reliable Building Extraction (광학 영상과 Lidar의 정보 융합에 의한 신뢰성 있는 구조물 검출)

  • Lee, Dong-Hyuk;Lee, Kyoung-Mu;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.236-244
    • /
    • 2008
  • We propose a new building detection and description algorithm for Lidar data and photogrammetric imagery using color segmentation, line segments matching, perceptual grouping. Our algorithm consists of two steps. In the first step, from the initial building regions extracted from Lidar data and the color segmentation results from the photogrammetric imagery, we extract coarse building boundaries based on the Lidar results with split and merge technique from aerial imagery. In the secondstep, we extract precise building boundaries based on coarse building boundaries and edges from aerial imagery using line segments matching and perceptual grouping. The contribution of this algorithm is that color information in photogrammetric imagery is used to complement collapsed building boundaries obtained by Lidar. Moreover, linearity of the edges and construction of closed roof form are used to reflect the characteristic of man-made object. Experimental results on multisensor data demonstrate that the proposed algorithm produces more accurate and reliable results than Lidar sensor.

Simulation Based Performance Assessment of a LIDAR Data Segmentation Algorithm (라이다데이터 분할 알고리즘의 시뮬레이션 기반 성능평가)

  • Kim, Seong-Joon;Lee, Im-Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.119-129
    • /
    • 2010
  • Many algorithms for processing LIDAR data have been developed for diverse applications not limited to patch segmentation, bare-earth filtering and building extraction. However, since we cannot exactly know the true locations of individual LIDAR points, it is difficult to assess the performance of a LIDAR data processing algorithm. In this paper, we thus attempted the performance assessment of the segmentation algorithm developed by Lee (2006) using the LIDAR data generated through simulation based on sensor modelling. Consequently, based on simulation, we can perform the performance assessment of a LIDAR processing algorithm more objectively and quantitatively with an automatic procedure.

Object-oriented Classification of Urban Areas Using Lidar and Aerial Images

  • Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.173-179
    • /
    • 2015
  • In this paper, object-based classification of urban areas based on a combination of information from lidar and aerial images is introduced. High resolution images are frequently used in automatic classification, making use of the spectral characteristics of the features under study. However, in urban areas, pixel-based classification can be difficult since building colors differ and the shadows of buildings can obscure building segmentation. Therefore, if the boundaries of buildings can be extracted from lidar, this information could improve the accuracy of urban area classifications. In the data processing stage, lidar data and the aerial image are co-registered into the same coordinate system, and a local maxima filter is used for the building segmentation of lidar data, which are then converted into an image containing only building information. Then, multiresolution segmentation is achieved using a scale parameter, and a color and shape factor; a compactness factor and a layer weight are implemented for the classification using a class hierarchy. Results indicate that lidar can provide useful additional data when combined with high resolution images in the object-oriented hierarchical classification of urban areas.

Segmentation and Classification of Lidar data

  • Tseng, Yi-Hsing;Wang, Miao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.153-155
    • /
    • 2003
  • Laser scanning has become a viable technique for the collection of a large amount of accurate 3D point data densely distributed on the scanned object surface. The inherent 3D nature of the sub-randomly distributed point cloud provides abundant spatial information. To explore valuable spatial information from laser scanned data becomes an active research topic, for instance extracting digital elevation model, building models, and vegetation volumes. The sub-randomly distributed point cloud should be segmented and classified before the extraction of spatial information. This paper investigates some exist segmentation methods, and then proposes an octree-based split-and-merge segmentation method to divide lidar data into clusters belonging to 3D planes. Therefore, the classification of lidar data can be performed based on the derived attributes of extracted 3D planes. The test results of both ground and airborne lidar data show the potential of applying this method to extract spatial features from lidar data.

  • PDF

Study about Low-Cost Autonomous Driving Simulator Framework Based on 3D LIDAR (33D LIDAR 를 기반으로 하는 저비용 자율 주행 시뮬레이터 프레임워크에 대한 연구)

  • O, Eun Taek;Cho, Min Woo;Gu, Bon Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.702-704
    • /
    • 2022
  • 자율주행 시뮬레이터를 위한 대체재로 게임 엔진을 통한 가상 환경 모의 연구가 수행되고 있다. 하지만 게임 엔진에서는 자율 주행에 필요한 센서를 기기에 맞게 사용자가 직접 모델링을 해줘야 하기 때문에 개발 비용이 크게 작용된다. 특히, Ray 를 활용한 3D LIDAR 는 GPU(Graphics Processing Unit) 사용량이 많은 작업이기 때문에 저비용 시뮬레이터를 위해서는 저비용 3D LIDAR 모의가 필요하다. 본 논문에서는 낮은 컴퓨터 연산을 사용하는 C++ 기반 3D LIDAR 모의 프레임 워크를 제안한다. 제안된 3D LIDAR 는 다수의 언덕으로 이루어진 비포장 Map 에서 성능을 검증 하였으며, 성능 검증을 의해 본 논문에서 생성된 3D LIDAR 로 간단한 LPP(Local Path Planning) 생성 방법도 소개한다. 제안된 3D LIDAR 프레임 워크는 저비용 실시간 모의가 필요한 자율 주행 분야에 적극 활용되길 바란다.

Obstacle Classification Method Based on Single 2D LIDAR Database (2D 라이다 데이터베이스 기반 장애물 분류 기법)

  • Lee, Moohyun;Hur, Soojung;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.179-188
    • /
    • 2015
  • We propose obstacle classification method based on 2D LIDAR(Light Detecting and Ranging) database. The existing obstacle classification method based on 2D LIDAR, has an advantage in terms of accuracy and shorter calculation time. However, it was difficult to classifier the type of obstacle and therefore accurate path planning was not possible. In order to overcome this problem, a method of classifying obstacle type based on width data of obstacle was proposed. However, width data was not sufficient to improve accuracy. In this paper, database was established by width, intensity, variance of range, variance of intensity data. The first classification was processed by the width data, and the second classification was processed by the intensity data, and the third classification was processed by the variance of range, intensity data. The classification was processed by comparing to database, and the result of obstacle classification was determined by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that calculation time declined in comparison to 3D LIDAR and it was possible to classify obstacle using single 2D LIDAR.