• Title/Summary/Keyword: LI5

Search Result 5,273, Processing Time 0.026 seconds

Sintering Properties of the $Mg_5Ta_4O_{15}$ Ceramics with $Li_2CO_3$ Additions ($Li_2CO_3$ 첨가에 따른 $Mg_5Ta_4O_{15}$ 세라믹스의 소결 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.175-176
    • /
    • 2008
  • In this study, the sintering properties and structural properties of the $Mg_5Ta_4O_{15}$cation-deficient perovskite ceramics with $Li_2CO_3$ additions are investigated. The cation-deficient perovskite ceramics are prepared through the solid-state route. According to the XRD pattern, $Mg_4Ta_2O_9$, $MgTa_2O_6$ and $Mg_5Ta_4O_{15}$ phase existed in sintered pure $Mg_5Ta_4O_{15}$ ceramics. With $Li_2CO_3$, additions, the peak intensities of $Mg_4Ta_2O_9$ and $MgTa_2O_6$ phase were reduced. Also, diffraction intensity of the $Mg_5Ta_4O_{15}$ phase was increased with increments of $Li_2CO_3$ additions. The bulk densities were increased with increasing of $Li_2CO_3$ amount and approach the theoretical density of the $Mg_5Ta_4O_{15}$ ceramics, more and more. Microstructure of the $Mg_5Ta_4O_{15}$ ceramics were densified more and more by additions of $Li_2CO_3$. The bulk density of $Mg_5Ta_4O_{15}$+5wt% $Li_2CO_3$ ceramics sintered at $1500^{\circ}C$ for 10 hours was $5.88g/cm^3$.

  • PDF

Investigation of LiO2 Adsorption on LaB1-xB'xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study

  • Kwon, Hyunguk;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.306-311
    • /
    • 2016
  • Li-air batteries have received much attention due to their superior theoretical energy density. However, their sluggish kinetics on the cathode side is considered the main barrier to high performance. The rational design of electrode catalysts with high activity is therefore an important challenge. To solve this issue, we performed density functional theory (DFT) calculations to analyze the adsorption behavior of the $LiO_2$ molecule, which is considered to be a key intermediate in both the Li-oxygen reduction reaction (ORR) and the evolution reaction (OER). Specifically, to use the activity descriptor approach, the $LiO_2$ adsorption energy, which has previously been demonstrated to be a reliable descriptor of the cathode reaction in Li-air batteries, was calculated on $LaB_{1-x}B^{\prime}_xO_3$(001) (B, B' = Mn, Fe, Co, and Ni, x = 0.0, 0.5). Our fast screening results showed that $LaMnO_3$, $LaMn_{0.5}Fe_{0.5}O_3$, or $LaFeO_3$ would be good candidate catalysts. We believe that our results will provide a way to more efficiently develop new cathode materials for Li-air batteries.

Introduction of Corrosion Index System for Stability of Drinking Water Quality (음용수질의 안정성을 위한 부식지수제도의 도입)

  • Kim, Yeong-Kwan;Kim, Jin-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.707-717
    • /
    • 2011
  • Replacement of old water distribution pipes for protecting water quality induced by pipe corrosion requires enormous budget. Even after the replacement, however, corrosion can occur again at any times and, therefore, inhibitive measure of the corrosion will be not only economical but needed to diminish the consumers' distrust on tap water quality. In 2008, National Environmental Research Institute did a survey on 8 major drinking water source and proposed to establish the Langelier Saturation Index(LI) as a corrosion index in Drinking Water Quality Criteria. Among the water industries of Korea, K-Water is the only one that set up the level of pH over 7.0 and LI above -1.5 on yearly average basis. However, no systematic regulation including LI to inhibit the corrosive tendency has been established yet. In this paper, LI values out of 31 drinking water treatment plants were analyzed and two-stage control of LI value as a measure of corrosive tendency of water is proposed. Primarily, water treatment facilities may operate the system at a target LI value below -1.5. Following the investigation on the effect caused by adjusting the LI value on water quality and corrosiveness, it will be desirable to improve LI value below -1.0 in the long run. In addition to the LI, supplemental use of Larson's modified ratio (LMR) which incorporates hydraulic detention time will be necessary. Several methods to prove the inhibitive effect of improving the LI value on water quality have been also suggested.

Characteristics of Lithium Secondary Batteries Using Li Salt-Organic Electrolyte as Function of Temperature (온도에 따른 리튬염 유기전해액 리튬이차전지의 특성)

  • Doh, Chil-Hoon;Shim, Eun-Gi;Moon, Seong-In;Yun, Mun-Soo;Yeom, Dale;Roh, Jae-Ho;Hwang, Young-Gi
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.99-105
    • /
    • 2002
  • This study investigated characteristics of ICR18650 batteries with different electrolyte compositions in the range of $80^{\circ}C\~-30^{\circ}C$. ICR18650 cells using $1M\;LiPF_6,\;EC:\;DEC:\;DMC(3:5:5)\;and\; 1M\;LiPF_6,\;EC:\;DEC:\;DMC:\;EMC(3:5:4:1)$ electrolyte systems, which DMC and EMC solvent were added in $1M\;LiPF_6,\;EC:\;DEC$ electrolytes have high specific energy in the wide range of temperature. The specific energy of ICR18650 batteries using $1M\;LiPF_6,\;EC:\;DEC:\;DMC(3:5:5)\;and\; 1M\;LiPF_6,\;EC:\;DEC;\:\;DMC:\;EMC(3:5:4:1)$ electrolyte at $-30^{\circ}C\;was\;64\%\;and\;59\%$ of room temperature$(25^{\circ}C)$, respectively.

Low Temperature Sintering Properties of $Li_2CO_3$ dopped $(Ba_{0.5}Sr_{0.5})TiO_3$ Ceramic ($Li_2CO_3$ 이 첨가된 저온 소결 $(Ba_{0.5}Sr_{0.5})TiO_3$의 특성 연구)

  • You, Hee-Wook;Kim, In-Sung;Lee, Young-Hie;Koh, Jung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.238-239
    • /
    • 2005
  • The effects of $Li_2CO_3$ addition on the sintering behavior of $Ba_{0.5}Sr_{0.5}TiO_3$ ceramic have been investigated. The amount of $Li_2CO_3$ was varied from 1 wt% to 5 wt%. The crystalline and dielectric properties were investigated through X-ray diffraction and frequency dependent permittivity, respectively.

  • PDF

A Study on the Li5Fe5O8 Species Affecting the Microwave Heating Performance on the Ternary Li-Fe-Zn Material (3원계 금속산화물로 제조한 마이크로웨이브 발열소재상 Li5Fe5O8 종이 발열성능에 미치는 영향 연구)

  • Jang, Young Hee;Lee, Sang Moon;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.703-709
    • /
    • 2018
  • Dielectric heating materials were prepared through the thermal treatment for composites of Li and Zn type precursors that are major materials being responded to microwave under diversified conditions. The prepared heating material samples were analyzed by SEM and it was confirmed that $Li_5Fe_5O_8$ materials being formed on the surface was a major influencing factor for the heating performance. Heating materials improved the moisture removal in a sludge drying facility, for example, the moisture content of 25 v/v% sludge decreased to 15.22 v/v%. Accordingly, heating materials were confirmed to directly affect the performance and efficiency of the microwave drying process.

Theoretical Calculation of Zero Field Splitting of $Mn^{2+}$ Ion in $LiTaO_3$Crystal

  • Yeom, T.H;Lee, S.H
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.77-79
    • /
    • 2001
  • The semi-empirical superposition model has been applied to calculate the zero field splitting parameters of $Mn^{2+}$ion in $LiTaO_3$ single crystal, assuming that $Mn^{2+}$ion occupies one of two possible sites: $Li^{l+} \;or\; Ta^{5+}$ site, respectively. The 2nd-order axial zero field splitting parameters are $958\times10^{-4}cm^{-1}\; at\; Li^{1+}$ site and $193\times 10^{-4}cm^{-1} \;at\; Ta^{5+}$ site for $Mn^{2+}$ions. The 4th-order zero field splitting parameters at $Li^{l+} \;and\; Ta^{5+}$ sites are also determined. These calculated zero field splitting parameters are very important to determine the substitutional sites of doped impurity ions in $LiTaO_3$ crystal.

  • PDF

Synthesis of Li4/3Mn5/3O4 by Sol-Gel Process and its Electrochemical Properties (졸-겔법에 의한 Li4/3Mn5/3O4의 합성 및 전기화학적 특성)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.80-84
    • /
    • 1999
  • $Li_{4/3}Mn_{5/3}O_4$ having a defect structure was prepared by sol-gel process using lithium acetate and manganese acetate as starting materials, and their electrode characteristics in the lithium secondary battery was investigated. The reaction mole ratio was determined as $AA/Mn(OAc)_2$ of 0.2 and $NH_4OH/Mn(OAc)_2$ to $H_2O/Mn(OAc)_2$ of 0.4. The product was obtained through heat treatment at $350^{\circ}C$ for 12hrs after 1'st heat treatment at $150^{\circ}C$ of xerogel under oxygen atmosphere. When the charge and discharge cycles were performed between 2.0 V and 3.2 V, $Li/Li_{4/3}Mn_{5/3}O_4$ cell showed the dicharge capacity of 84.23 mAh/g and the good cycleability was obtained in the plateau region.

  • PDF