DOI QR코드

DOI QR Code

A Study on the Li5Fe5O8 Species Affecting the Microwave Heating Performance on the Ternary Li-Fe-Zn Material

3원계 금속산화물로 제조한 마이크로웨이브 발열소재상 Li5Fe5O8 종이 발열성능에 미치는 영향 연구

  • Jang, Young Hee (Department of Environmental Energy Engineering, Graduate School of Kyonggi University,) ;
  • Lee, Sang Moon (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 장영희 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이상문 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2018.07.24
  • Accepted : 2018.08.27
  • Published : 2018.12.10

Abstract

Dielectric heating materials were prepared through the thermal treatment for composites of Li and Zn type precursors that are major materials being responded to microwave under diversified conditions. The prepared heating material samples were analyzed by SEM and it was confirmed that $Li_5Fe_5O_8$ materials being formed on the surface was a major influencing factor for the heating performance. Heating materials improved the moisture removal in a sludge drying facility, for example, the moisture content of 25 v/v% sludge decreased to 15.22 v/v%. Accordingly, heating materials were confirmed to directly affect the performance and efficiency of the microwave drying process.

마이크로웨이브에 감응하는 주요물질인 Li와 Zn계 전구체를 다양한 조건별로 혼합 및 열처리하여 유전발열소재(dielectric heating materials)를 제조하였다. 제조된 발열소재의 표면 형태 등의 변화를 SEM 분석으로 확인하였으며 기공구조, 열처리 단계 그리고 표면에 형성되어 있는 $Li_5Fe_5O_8$ 물질이 발열성능에 주요한 영향인자임을 확인하였다. 또한 슬러지 건조 장치에 발열소재가 적용되었을 경우와 그렇지 않은 경우 25%의 함수율을 갖는 슬러지가 각각 6.34%, 15.22%로 건조되어 슬러지 수분 제거효율이 58.34% 상승하였음을 확인하였다. 이에 따라 발열소재가 마이크로웨이브 건조 공정의 성능 및 효율에 직접적인 영향을 미칠 수 있음을 확인하였다.

Keywords

GOOOB2_2018_v29n6_703_f0001.png 이미지

Figure 1. Schematic diagram of microwave oven setup for microwave heating of dielectric heating materials.

GOOOB2_2018_v29n6_703_f0002.png 이미지

Figure 2. Schematic diagram of sewage sludge drying test.

GOOOB2_2018_v29n6_703_f0003.png 이미지

Figure 3. Exothermic performance evaluations of test heating materials with different precursors (Li and Zn)(heating temperature: 1,400 ℃, gas: air, microwave condition: 500 W).

GOOOB2_2018_v29n6_703_f0004.png 이미지

Figure 4. Exothermic performance of test heating materials: (a): B-9, (b): B-14.

GOOOB2_2018_v29n6_703_f0005.png 이미지

Figure 5. SEM of B-9 with different conditions: (a): air, (b): N2, (c): Ar.

GOOOB2_2018_v29n6_703_f0006.png 이미지

Figure 6. XRD patterns of B-9 with different conditions: (a): air, (b): N2, (c): Ar.

GOOOB2_2018_v29n6_703_f0007.png 이미지

Figure 7. Exothermic performance of B-14 with different electrical power.

GOOOB2_2018_v29n6_703_f0008.png 이미지

Figure 8. Moisture contents of sludge with or without B-14 (heating temperature: 1,400 ℃, gas: N2, microwave experiment: 500 W, 1 min).

Table 1. Notation of Various Dielectric Heating Materials

GOOOB2_2018_v29n6_703_t0001.png 이미지

Table 2. Microwave heating test conditions

GOOOB2_2018_v29n6_703_t0002.png 이미지

Table 3. Mass Contents of w/w% of Sewage Sludge at Microwave Drying System

GOOOB2_2018_v29n6_703_t0003.png 이미지

Table 4. Moisture Contents of Sludge with or without B-14

GOOOB2_2018_v29n6_703_t0004.png 이미지

References

  1. J. W. An, M. Oh, Y. J. Lee, S. J. Oh, H. S. Oh, Y. H. Kim, and J. Y. Lee, Evaluation of drying efficiency of sewage sludge using biodrying, J. Korea Soc. Waste Manag., 35, 103-109 (2018). https://doi.org/10.9786/kswm.2018.35.2.103
  2. D. G. Kim, K. Y. Lee, and K. Y. Park, Hydrothermal carbonization of sewage sludge for solid recovered fuel and energy recovery, J. Korean Soc. Water Wastewater, 29, 57-63 (2015). https://doi.org/10.11001/jksww.2015.29.1.057
  3. M. H. Shim, S. K. Yun, K. H. Lee, D. S. Ryu, H. Y. Lee, K. S. Lee, and S. B. Jo, Experimental results of pilot biodrying of organic sludge, Fall Meeting of Korea Organic Resources Recycling Association, September 30 (2017).
  4. Z. Chen, M. T. Afzal, and A. A. Salema, Microwave drying of wastewater sewage sludge, J. Clean Energy Technol., 2, 282-286 (2014).
  5. M. S. Shin, H. D. Lee, and Y. W. Jeon, Evaluation of drying performances by hydrothermal reaction of sewage sludge and food wastes, J. Korea Org. Resour. Recycling Assoc., 28, 47-55 (2017).
  6. Y. F. Huang, H. T. Sung, P. T. Chiueh, and S. L. Lo, Co-torrefaction of sewage sludge and leucaena by using microwave heating, J. Energy, 116, 1-7 (2016). https://doi.org/10.1016/j.energy.2016.09.102
  7. R. Rajavaram, J. H. Lee, J. S. Oh, H. G. Kim, and J. H. Lee, Microwave heating characteristics of magnetite ore, J. Met. Mater. Int., 22, 1116-1120 (2016). https://doi.org/10.1007/s12540-016-6045-2
  8. Q. Li, X. Lu, H. Guo, Z. Yang, Y. Li, S. Zhi, and K. Zhang, Sewage sludge drying method combining pressurized electro- osmotic dewatering with subsequent bio-drying, J. Bioresour. Technol., 263, 94-102 (2018). https://doi.org/10.1016/j.biortech.2018.04.110
  9. J. E. Lee, E. M. Cho, and B. H. Kim, Air drying technology for dewatered cake from wastewater and waterworks sludge, J. Korean Soc. Environ. Eng., 28, 1154-1161 (2006).
  10. L. Cai, T. B. Chen, D. Gao, and J. Yu, Bacterial communities and their association with the bio-drying of sewage sludge, J. Water Res., 90, 44-51 (2016). https://doi.org/10.1016/j.watres.2015.12.026
  11. S. N. Ardeh, F. Bertrand, and P. R. Stuart, Key variables analysis of a novel continuous biodrying process for drying mixed sludge, Bioresour. Technol., 101, 3379-3387 (2010). https://doi.org/10.1016/j.biortech.2009.12.037
  12. N. Remya and J. G. Lin, Current status of microwave application in wastewater treatment-A review, J. Chem. Eng., 166, 797-813 (2011). https://doi.org/10.1016/j.cej.2010.11.100
  13. D. K. Kim, J. S. Kum, J. R. Kim, S. J. Kim, Y. H. Chung, D. K. Kim, and K. B. Kong, Economic evaluation through thermal efficiency elevation in hot air drying tower, J. Fish Mar. Sci. Edu, 20, 500-507 (2008).
  14. S. N. Ardeh, F. Bertrand, and P. R. Stuart, Emerging biodrying technology for the drying of pulp and paper mixed sludges, Navaee-Ardeh, J. Drying Technol., 24, 868-878 (2006).
  15. E. N. Riti-Mihoc, E. Riti-Mihoc, and D. Porcar, Drying sewage sludge using microwave technology - Modern method and energy efficiency, Int. J. Energy Sci. Eng., 2, 28-32 (2016).
  16. M. Gupta and S. W. Leong, Eugene, Microwaves and Metals, John Wiley & Sons (2007).
  17. Z. Song, C. Jing, L. Yao, X. Zhao, J. Sung, W. Wang, Y. Mao, and C. Ma, Coal slime hot air/miocrowave combined drying characteristics and energy analysis, Fuel Process. Technol., 156, 491-499 (2017). https://doi.org/10.1016/j.fuproc.2016.10.016
  18. D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman, and N. J. Miles, Microwave heating applications in environmental engineering-a review, J. Resour. Conserv. Recycling, 34, 75-90 (2002). https://doi.org/10.1016/S0921-3449(01)00088-X
  19. L. Jinping, G. Jinhua, Hu. Jieqiong, and W. Ni, Study on new thermal drying methods for sewage sludge using microwave and its mechanism, Proceedings of the 5th International Conference on Civil Engineering and Transportation. November 28-29, Guangzhou, China (2015).
  20. S. Chandrasekaran, S. Ramanathan, and T. Basak, Microwave material processing-a review, AIChE J., 58, 330-363 (2011).
  21. H. Feng, Y. Yin, and J. Tang, Microwave drying of food and agricultural materials: Basics and heat and mass transfer modeling, Food Eng. Rev., 4, 89-106 (2012). https://doi.org/10.1007/s12393-012-9048-x
  22. A. P. Surzhikov, E. N. Lysenko, V. A. Vlasov, A. V. Malyshev, and E. V. Nikolaev, Investigation of the process of ferrite formation in the $Li_2CO_3-ZnO-Fe_2O_3$ system under high-energy actions, Russ. Phys. J., 6, 681-685 (2013).
  23. S. Chandrasekaran, T. Basak, and R. Srinivasan, Microwave heating characteristics of graphite based powder mixtures, Int. Commun. Heat Mass Transf., 487, 22-27 (2013).
  24. S. M. Lee, S. Y. Choi, D. D. Nguyen, S. W. Chang, and S. S. Kim, Sludge drying using microwave heating with $Li_2CO_3$-$Fe_2O_3$-ZnO materials, J. Ind. Eng. Chem., 61, 28-31 (2018). https://doi.org/10.1016/j.jiec.2017.11.043
  25. A. P. Surzhikov, E. N. Lysenko, V. A. Vlasov, A. V. Malyshev, M. V. Korabeynikov, and M. A. Mikhailenko, Influence of reagents mixture density on the radiation-thermal synthesis of lithium-zinc ferrites, Mater. Sci. Eng., 168, 012093 (2017).
  26. A. M. Alvarez, J. F. Bengoa, M. V. Cagmoli, N. G. Gallegos, S. G. Marchetti, and R. C. Mercader, Effect of the calcination atmosphere on the structural properties of the reduced Fe/$SiO_2$ system, Hyperfine Interact., 161, 3-9 (2005). https://doi.org/10.1007/s10751-005-9186-0
  27. E. N. Lysenko, A. V. Malyshev, and V. A. Vlasov, Microwave properties of Li-Zn ferrite ceramics, 15th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), June 30-July 4, Novosibirsk, Russia (2014).
  28. J. Sun, W. Wang, and Q. Yue, Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies, Materials (Basel), 9, 231-255 (2016). https://doi.org/10.3390/ma9040231
  29. J. A. Menendez, A. Arenillas, B. Fidalgo, Y. Fernandez, L. Zubizarreta, E. G. Calvo, and J. M. Bermudez, Microwave heating processes involving carbon materials, Fuel Process. Technol., 91, 1-8 (2010). https://doi.org/10.1016/j.fuproc.2009.08.021
  30. S. M. Hwang, J. I. Hong, and C. S. Huh, Characterization of the susceptibility of integrated circuits with induction caused by high power microwaves, Prog. Electromagn. Res., 81, 61-72 (2008). https://doi.org/10.2528/PIER07121704
  31. Ministry of Environment, Korea, Act on the Promotion of Saving and Recycling of Resources, 15101, Article 25-5 (Quality Inspections of Solid Fuels) (2018).