• 제목/요약/키워드: LH-moment ratio

검색결과 9건 처리시간 0.019초

LH-모멘트의 적정 차수 결정에 의한 설계홍수량 추정 ( I ) (Estimation of Design Flood by the Determination of Best Fitting Order of LH-Moments ( I ))

  • 맹승진;이순혁
    • 한국농공학회지
    • /
    • 제44권6호
    • /
    • pp.49-60
    • /
    • 2002
  • This study was conducted to estimate the design flood by the determination of best fitting order of LH-moments of the annual maximum series at six and nine watersheds in Korea and Australia, respectively. Adequacy for flood flow data was confirmed by the tests of independence, homogeneity, and outliers. Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and Generalized Logistic (GLO) distributions were applied to get the best fitting frequency distribution for flood flow data. Theoretical bases of L, L1, L2, L3 and L4-moments were derived to estimate the parameters of 4 distributions. L, L1, L2, L3 and L4-moment ratio diagrams (LH-moments ratio diagram) were developed in this study. GEV distribution for the flood flow data of the applied watersheds was confirmed as the best one among others by the LH-moments ratio diagram and Kolmogorov-Smirnov test. Best fitting order of LH-moments will be derived by the confidence analysis of estimated design flood in the second report of this study.

L-모멘트 및 LH-모멘트에 의한 GEV 분포모형의 실계홍수량의 유도 (Derivation of Design Flood by L-Moments and LH-Moments in GEV distributiion)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.479-485
    • /
    • 1999
  • This study was conducted to derived design floods by Generalized Extreme Value(GEV) distributiion for the annual maximum series at ten watersheds along Han, Nagdong, Geum , Yeongsan and Seomjin river systems. Adequency for the analysis of flood data used in this study was established by the test of Independence, Homogeneity , detection of Outliers. Coefficient of variation , skewness and kurtosis were calculated by the L-Moment, and LH-Moment ratio respectively. Parameters were estimated by the Method of L-Method of LH-Moment. Design floods obtained by Method of L-Moments and LH-Moments using different methods for plotting positions in GEV distributions and were compared with those obatined using the Method of L-Moments and LH-Moments by the Relative Mean Errors and Realtive Absoulte Errors. It was found that desgin floods derived by the method of L-Moments and LH-Moments using Cunnane plotting position foumula in the GEV distribution are much closer to those of the observed data in comparison with those obtained by methods of L-moments and LH-moments using the other formula for poltting postions from the viewpoint of Relative Mean Errors and Relative Absoulte Errors. In view of the fact that hydraulic structures indcluding dams and levees are generally usiong design floods with the return period of two hundred years or so, design floods derived by LH-Moments are seemed to be more reasonable than those of L-Moments in the GEV distribution.

  • PDF

L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정 (II)- LH-모멘트법을 중심으로 - (Estimation of Drought Rainfall by Regional Frequency Analysis Using L and LH-Moments (II) - On the method of LH-moments -)

  • 이순혁;윤성수;맹승진;류경식;주호길;박진선
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.27-39
    • /
    • 2004
  • In the first part of this study, five homogeneous regions in view of topographical and geographically homogeneous aspects except Jeju and Ulreung islands in Korea were accomplished by K-means clustering method. A total of 57 rain gauges were used for the regional frequency analysis with minimum rainfall series for the consecutive durations. Generalized Extreme Value distribution was confirmed as an optimal one among applied distributions. Drought rainfalls following the return periods were estimated by at-site and regional frequency analysis using L-moments method. It was confirmed that the design drought rainfalls estimated by the regional frequency analysis were shown to be more appropriate than those by the at-site frequency analysis. In the second part of this study, LH-moment ratio diagram and the Kolmogorov-Smirnov test on the Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distributions were accomplished to get optimal probability distribution. Design drought rainfalls were estimated by both at-site and regional frequency analysis using LH-moments and GEV distribution, which was confirmed as an optimal one among applied distributions. Design rainfalls were estimated by at-site and regional frequency analysis using LH-moments, the observed and simulated data resulted from Monte Carlotechniques. Design drought rainfalls derived by regional frequency analysis using L1, L2, L3 and L4-moments (LH-moments) method have shown higher reliability than those of at-site frequency analysis in view of RRMSE (Relative Root-Mean-Square Error), RBIAS (Relative Bias) and RR (Relative Reduction) for the estimated design drought rainfalls. Relative efficiency were calculated for the judgment of relative merits and demerits for the design drought rainfalls derived by regional frequency analysis using L-moments and L1, L2, L3 and L4-moments applied in the first report and second report of this study, respectively. Consequently, design drought rainfalls derived by regional frequency analysis using L-moments were shown as more reliable than those using LH-moments. Finally, design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were derived by regional frequency analysis using L-moments, which was confirmed as a more reliable method through this study. Maps for the design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were accomplished by the method of inverse distance weight and Arc-View, which is one of GIS techniques.

LH-모멘트에 의한 극치홍수량의 빈도분석을 위한 적정분포형 유도 (Derivation of Optimal Distribution for the Frequency Analysis of Extreme Flood using LH-Moments)

  • 맹승진;이순혁
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.229-232
    • /
    • 2002
  • This study was conducted to estimate the design flood by the determination of best fitting order of LH-moments of the annual maximum series at six and nine watersheds in Korea and Australia, respectively. Adequacy for flood flow data was confirmed by the tests of independence, homogeneity, and outliers. Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and Generalized Logistic (GLO) distributions were applied to get the best fitting frequency distribution for flood flow data. Theoretical bases of L, L1, L2, L3 and L4-moments were derived to estimate the parameters of 4 distributions. L, L1, L2, L3 and L4-moment ratio diagrams (LH-moments ratio diagram) were developed in this study.

  • PDF

확률가중모멘트의 차수 변화에 따른 홍수량 변동 특성 분석 (Analysis on Characteristics of Variation in Flood Flow by Changing Order of Probability Weighted Moments)

  • 맹승진;황주하
    • 한국산학기술학회논문지
    • /
    • 제10권5호
    • /
    • pp.1009-1019
    • /
    • 2009
  • 본 연구에서는 우리나라 수위관측소들 중에서 관측 유량이 검증된 총 19개 유역을 선정하고 관측된 홍수량을 사용하여 적정 설계홍수량을 유도함으로써 우리나라의 설계홍수량 특성을 분석하였다. 대상유역별로 관측개시 년도에서부터 분석 시작년을 기준으로 1년씩 증가 시키는 점진적 구성 방식으로 연최대홍수량에 대한 빈도분석을 실시하기 위해, 변동특성을 이동평균법에 의해 분석하였다. 19개 대상유역에 대한 연최대홍수량 계열 구성기간별로 기본통치를 산정하고 독립성, 동질성 및 Outiler 검정을 실시하였다. Gumbel, Generalized Extreme Value, Generalized Logistic 및 Generalized Pareto 분포의 적합도 검정을 LH-모멘트비도와 Kolmogorov-Smirnov 검정에 의해 수행하였다. 적정 확률분포로 선정된 GEV 분포의 매개변수를 확률가중모멘트의 치수 변화에 의한 L, L1, L2, L3 및 L4-모멘트법에 의해 추정하고 대상유역 및 연최대홍수량 계열 구성 기간별 설계홍수량을 유도하였다. 본 연구에서 사용한 변동률 분석에 따라 최근 지구온난화에 따른 우리나라 기후 변화를 고려한 적절한 수리구조물의 설계 조건변경시기는 2002년 전후로 하여야 할 것이다.

L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정(I) - L-모멘트법을 중심으로 - (Estimation of Drought Rainfall by Regional Frequency Analysis using L and LH-Moments(I) - On the Method of L-Moments -)

  • 이순혁;윤성수;맹승진;류경식;주호길
    • 한국농공학회지
    • /
    • 제45권5호
    • /
    • pp.97-109
    • /
    • 2003
  • This study is mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. It is anticipated to suggest optimal design drought rainfall of hydraulic structures for the water requirement and drought frequency of occurrence for the safety of water utilization through this study. Preferentially, this study was conducted to derive the optimal regionalization of the precipitation data that can be classified by the climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. Five homogeneous regions in view of topographical and climatological aspects were accomplished by K-means clustering method. Using the L-moment ratio diagram and Kolmogorov-Smirnov test, generalized extreme value distribution was confirmed as the best fitting one among applied distributions. At-site and regional parameters of the generalized extreme value distribution were estimated by the method of L-moments. Design drought rainfalls using L-moments following the consecutive duration were derived by the at-site and regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design drought rainfall derived by at-site and regional analysis in the observed an simulated data were computed and compared. In has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE. RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design drought rainfall. Consequently, optimal design drought rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Potential ameliorative effects of bilberry (Vaccinium myrtillus L.) fruit extract on cisplatin-induced reproductive damage in adult male albino rats

  • Fatma B. Mossa;Nadia Bakry;Mamdouh Rashad El-Sawi
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제51권3호
    • /
    • pp.192-204
    • /
    • 2024
  • Objective: Cisplatin (CP) is a widely used chemotherapeutic agent, but its severe side effects impact testicular function. We investigated the potential protective effects of bilberry extract against CP-induced testicular toxicity. Methods: Forty adult male albino rats were divided into four groups. Control animals received a single oral dose of 0.9% saline. Bilberry-treated rats received oral bilberry extract (200 mg/kg body weight [BW] dissolved in 1 mL of saline) daily for 10 consecutive days. CP-treated animals were administered a single intraperitoneal dose (7.5 mg/kg BW). Finally, a bilberry+CP group received oral bilberry extract (200 mg/kg BW) daily for 10 consecutive days, with one intraperitoneal dose of CP (7.5 mg/kg BW) on day 2. We assessed sperm count, motility, viability, and abnormalities, along with testis weight, testis weight-to-BW ratio, antioxidant activity, levels of oxidative stress markers (malondialdehyde [MDA] and hydrogen peroxide [H2O2]), sex hormones (follicle-stimulating hormone [FSH], luteinizing hormone [LH], and testosterone), and apoptotic and anti-apoptotic markers, and DNA damage. Testicular tissue underwent histopathological examination. Results: Among CP-treated rats, significantly lower values were observed for testis weight; testis weight-to-BW ratio; levels of FSH, LH, testosterone, superoxide dismutase, catalase, glutathione S-transferase, glutathione, and B-cell lymphoma 2; and sperm count, motility, and proportion of normal sperm. CP administration was associated with higher MDA, H2O2, p53, Bax, cytochrome c, caspase 9, and caspase 3 levels, along with elevated tail moment. However, bilberry extract administration significantly improved all altered parameters. Conclusion: Bilberry treatment demonstrated protective effects and reduced CP-induced testicular toxicity via antioxidant activity and cytoprotection.

L-모멘트 및 LH-모멘트 기법에 의한 적정 설계홍수량의 유도( I ) - L-모멘트법을 중심으로 - (Derivation of Optimal Design Flood by L-Moments and LB-Moments ( I ) - On the method of L-Moments -)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.45-57
    • /
    • 1998
  • This study was conducted to derive optimal design floods by Generalized Extreme Value (GEV) distribution for the annual maximum series at ten watersheds along Han, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was established by the tests of Independence, Homogeneity, detection of Outliers. L-coefficient of variation, L-skewness and L-kurtosis were calculated by L-moment ratio respectively. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in GEV distribution were compared by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE). The results were analyzed and summarized as follows. 1. Adequacy for the analysis of flood data was acknowledged by the tests of Independence, Homogeneity and detection of Outliers. 2. GEV distribution used in this study was found to be more suitable one than Pearson type 3 distribution by the goodness of fit test using Kolmogorov-Smirnov test and L-Moment ratios diagram in the applied watersheds. 3. Parameters for GEV distribution were estimated using Methods of Moments and L-Moments. 4. Design floods were calculated by Methods of Moments and L-Moments in GEV distribution. 5. It was found that design floods derived by the method of L-Moments using Weibull plotting position formula in GEV distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions from the viewpoint of Relative Mean Errors and Relative Absolute Errors.

  • PDF