• 제목/요약/키워드: LES Model

검색결과 307건 처리시간 0.028초

Conditional Skewness and Kurtosis in Natural Exponential Models

  • Hong, Chong-Sun;Lim, Han-Seung
    • Communications for Statistical Applications and Methods
    • /
    • 제5권3호
    • /
    • pp.887-894
    • /
    • 1998
  • Let T=( $T_1$,…, $T_{k}$;k$\geq$2) be a minimal sufficient and complete statistic for a k-parameter exponential model. Consider a partition of T into ( $T_1$, $T_2$), where $T_1$=( $T_1$,…, $T_{r}$ and $T_2$=( $T_{r+1}$,…, $T_{k}$1$\leq$r$\leq$k-1/). This article represents a way to obtain higher moments such as skewness and kurtosis for the distribution T and the conditional distribution of $T_1$, given $T_2$= $t_2$. These results are illustrated by some examples.s.les.s.

  • PDF

진동하는 고 받음각 날개주위의 비정상 아음속 유동해석 (Analysis of Unsteady Subsonic Flow Around a High Angle of Attack of the Oscillating Airfoil)

  • 문지수;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.434-440
    • /
    • 2011
  • Oscillating airfoil haw been challenged for the dynamic stalls of airfoil am wind turbines at high angle of attach. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance am safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed for the oscillating airfoil at high angle of attack around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.2 and Reynolds number of $1.2{\times}10^4$. The lift, drag, pressure distribution, etc. are analyzed according to the pitching oscillation. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

자동차 Cooling Fan용 비등각 축류홴 소음해석 (Acoustic Analysis of Unevenly Pitched Fan of Automobile Cooling Pack System)

  • 송우석;이정수;김주용;이승배
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.567-571
    • /
    • 2004
  • The 2-dimensional unsteady flows on and around the cambered airfoils were computed by applying LES with the deductive dynamic SGS model. The unsteady flow field were used as inputs to compute the far-field sounds and directivity patterns from rotating blades by a hybrid approach that exploits Farassat's formula. The BEM (Boundary Element Method) was applied to predict the frequency characteristics from the rotating blades for the cases of even- and uneven-pitched fans. The BEM results suggested that the unevenly pitched fan have less pronounced discrete peaks at BEF frequencies, which was confirmed by the experiment.

  • PDF

Numerical simulation of the effect of section details and partial streamlining on the aerodynamics of bridge decks

  • Bruno, L.;Khris, S.;Marcillat, J.
    • Wind and Structures
    • /
    • 제4권4호
    • /
    • pp.315-332
    • /
    • 2001
  • Presented herein is a numerical study for evaluating the aerodynamic behaviour of equipped bridge deck sections. In the first part, the method adopted is described, in particular concerning turbulence models, meshing requirements and numerical approach. The validation of the procedure represents the aim of the second part of the paper: the results of the numerical simulation in case of two-dimensional, steady, incompressible, turbulent flow around a realistic bridge deck are compared to the data collected from wind-tunnel tests. In order to demonstrate the influence of the section details and of the partial streamlining of the deck geometry on its aerodynamic behaviour, in the third part of the paper the effect of the fairings and of each item of equipment of the section (such as central barriers, side railings and sidewalks) is evaluated. The study has been applied to the deck section of the Normandy cable-stayed bridge.

T형 볼밸브 내의 유동특성 해석 및 압력변동의 FFT 분석 (Study on the flow characteristics and FFT analysis to the pressure fluctuation in a T-type ball valve)

  • 여창호;허형석;서용권
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.240-244
    • /
    • 2003
  • In this paper, we present the CFD and experimental results for flow characteristics as well as pressure fluctuation in a T-type ball valve. In the experiment, flow visualization for the wake is performed with a fluorescent dye. In CFD, the valve flow is simulated three-dimensionally using a commercial fluid analysis code, FLUENT 6.0. FFT analysis to the pressure fluctuation in the wake region is also calculated Analysis results show that the characteristic frequency of the wake flow is strongly dependent on the Reynolds number.

  • PDF

다방향 불규칙파가 투과성 잠제 주변의 3차원 파동장에 미치는 영향 (Effect of Multi-directional Random Waves on Characteristics of 3-D Wave Field around Permeable Submerged Breakwaters)

  • 허동수;이우동
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.68-78
    • /
    • 2012
  • This study proposes an improved 3-D model that includes a new non-reflected wave generation system for oblique incident and multi-directional random waves, which enables us to estimate the effect of the various wave-types on 3-D wave fields in a coastal area with permeable submerged breakwaters. Then, using the numerical results,the three-dimensional wave field characteristics around permeable submerged breakwaters are examined in cases of oblique incident and multi-directional random waves. Especially, the wave height, mean surface elevation and mean flow around the submerged breakwaters are discussed in relation to the variation of incident wave condition.

우이천 유역의 횡단 월류형 구조물 철거에 의한 수리영향 분석 (Analysis of Hydraulic effect on Removing Side Overflow Type Structures in Woo Ee Stream Basin)

  • 문영일;윤선권;전시영;김종석
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.687-690
    • /
    • 2008
  • Currently, Stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many reach uppermost limit. In this study, FLOW-3D using CFD(Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-\varepsilon$, RNG(Renomalized Group Theory) $k-\varepsilon$ and LES(Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the side overflow type structures at Jangwall bridge in urban stream.

  • PDF

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

방파제에 의한 풍속할증이 풍력터빈에 미치는 영향 (Effect of Wind Speed up by Seawall on a Wind Turbine)

  • 하영철;이봉희;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.1-8
    • /
    • 2013
  • In order to identify positive or negative effect of seawall on wind turbine, a wind tunnel experiment has been conducted with a 1/100 scaled-down model of Goonsan wind farm which is located in West coast along seawall. Wind speedup due to the slope of seawall contributed to about 3% increment of area-averaged wind speed on rotor-plane of a wind turbine which is anticipated to augment wind power generation. From the turbulence measurement and flow visualization, it was confirmed that there would be no negative effect due to flow separation because its influence is confined below wind turbine blades' sweeping height.