• Title/Summary/Keyword: LED wavelength

Search Result 309, Processing Time 0.028 seconds

The fabrication of the 1.3$\mu\textrm{m}$ GaInAsP/InP surface emitting LED and its characteristics. (1.3$\mu\textrm{m}$파장의 GaInAsP/InP 표면 발광형 LED의 제작과 특성)

  • 박문호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.172-175
    • /
    • 1989
  • 1.3${\mu}{\textrm}{m}$ surface-emitting GaInAsP/InP LED was fabricated by two-phase supercooling LPE technique. The lattice mismatch of the grown DH wafer was typically 0.03%. The processes involve SiO2 CVD, lithography, Zn diffusion, lift-off, lapping, annealing, and wire bonding. The fabricated LED shows the optical power of 600㎼ at 70mA driving current, differential resistance of 4$\Omega$, the f3dB of 35MHz, and the FWHM of 1040{{{{ ANGSTROM }}. The peak wavelength of the fabricated LED was at 1.29${\mu}{\textrm}{m}$(100mA).

  • PDF

Optimum Cultivation Condition of Dunaliella Salina: Effects of Light Emitting Diode as a Lighting Source, Temperature, Light Intensity and Air Flow Rates (해양미세조류 Dunaliella Salina 최적 배양을 위한 연구: LED 조명, 온도, 광도 및 공기주입 속도에 따른 효과를 중심으로)

  • Choi, Boram;Kim, Dongsu;Lee, Taeyoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.630-636
    • /
    • 2012
  • The purpose of this study was to determine optimum wavelength, light intensity, aeration rate, and temperature for the cultivation of Dunaliella salina illuminated by various types of light emitting diode. Growth rates of Dunaliella salina were faster at higher temperature than the growth rate at lower temperature. Among the culturing temperatures, $22^{\circ}C$ was the optimum temperature for the growth of Dunaliella salina. White LED was the most efficient light source and lower light intensity (3,000 Lux) resulted in better biomass production (1.30 g/L). The value of aeration varied between 0 and 2.4 vvm at the illumination of 3,000 Lux of white light emitting diode. Highest specific growth rate of $1.12day^{-1}$ was obtained at no-aeration and lower specific growth rates were obtained for other aeration tests, which indicated that aeration could be harmful for the cultivation of Dunaliella salina.

Effects of Light Wavelengths on the Growth and Paralytic Shellfish Toxin Production of Alexandrium catenella and A. pacificum (유독 와편모조류 Alexandrium catenella와 A. pacifcium의 생장과 마비성 독소 생산에 미치는 빛의 파장의 영향)

  • Nam, Ki Taek;Kim, Seok-Yun;Moon, Chang-Ho;Kim, Chang-Hoon;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.84-92
    • /
    • 2020
  • To supply a stable amount of standard material to detect paralytic shellfish toxin (PST), we examined possible increases in toxic content in Alexandrium catenella and A. pacificum using a light emitting diode (LED), which is one of the most eco-friendly and economical lighting method. When comparing the growth rates of organisms and wavelengths of light used, the half saturation constants (Ks) of red wavelength were higher than those of other wavelengths. In contrast, the Ks of blue wavelength were lower than those of other wavelengths. Moreover, when comparing the toxic contents and wavelengths of light used, red wavelength produced approximately 8 times more toxic content in A. catenella and approximately 3.2 times more toxic content in A. pacificum than other wavelengths. Thus, the toxic content present in the organism might be closely related to the Ks of light. The optimum light source to be used to ensure economically ef ective and productive growth in an Alexandrium culture system (photo-bioreactor) would likely consist of a two-phase culture, wherein a blue LED is used during the lag and exponential phases to increase growth rates, followed by the use of a red LED during late exponential and stationary phases to achieve increased PST yields.

A Simple Design of an Imaging System for Accurate Spatial Mapping of Blood Oxygen Saturation Using a Single Element of Multi-wavelength LED (혈중 산소 포화도의 정확한 공간 매핑을 위한 다중 파장 LED 단일소자를 활용한 이미징 시스템 설계)

  • Jun Hwan Kim;Gi Yeon Yu;Ye Eun Song;Chan Yeong Yu;Yun Chae Jang;Riaz Muhammad;Kay Thwe Htun;Ahmed Ali;Seung Ho Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.450-464
    • /
    • 2023
  • Pulse oximetry, a non-invasive technique for evaluating blood oxygen saturation, conventionally depends on isolated measurements, rendering it vulnerable to factors like illumination profile, spatial blood flow fluctuations, and skin pigmentation. Previous efforts to address these issues through imaging systems often employed red and near-infrared illuminations with distinct profiles, leading to inconsistent ratios of transmitted light and the potential for errors in calculating spatial oxygen saturation distributions. While an integrating sphere was recently utilized as an illumination source to achieve uniform red and near-infrared illumination profiles on the sample surface, its bulkiness presented practical challenges. In this work, we have enhanced the pulse oximetry imaging system by transitioning illumination from an integrating sphere to a multi-wavelength LED configuration. This adjustment ensures simultaneous emission of red and near-infrared light from the same position, creating a homogeneous illumination profile on the sample surface. This approach guarantees consistent patterns of red and near-infrared illuminations that are spatially uniform. The sustained ratio between transmitted red and near-infrared light across space enables precise calculation of the spatial distribution of oxygen saturation, making our pulse oximetry imaging system more compact and portable without compromising accuracy. Our work significantly contributes to obtaining spatial information on blood oxygen saturation, providing valuable insights into tissue oxygenation in peripheral regions.

2D Slab Silicon Photonic Crystal for Enhancement of Light Emission in Visible Wavelengths

  • Cui, Yonghao;Lee, Jeong-Bong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.887-890
    • /
    • 2008
  • We present 2D slab silicon-based photonic crystal optical insulator to enhance light emission efficiency of light-emitting diode (LED). A 2D slab silicon photonic crystal is designed in such a way that light emitting diode die can be placed in the middle of the silicon photonic crystal. The device creates light propagation forbidden region in horizontal plane for Transverse Electric (TE) light with the wavelength range of 450 nm to 600 nm.

  • PDF

Evaluation on the lighting performance of a dynamic LED lighting system (동적 LED 시스템의 조명원적 성능분석)

  • Kim, Hyo-In;Kim, Jeong-Tai;Yun, Geun-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • LED lighting has received much attention in recent years due to its high energy efficiency and environmental friendliness. As the color of light can be obtained by adjusting the light intensity of LEDs, the quality of visual environment can be improved. The aims of this study are to develop a wavelength adjustable LED lighting system and to examine its lighting performances. The LED lighting system and experimental cell for assessment of the lighting performance were constructed. This LED lighting system is able to materialize the various spectral power distribution and color temperature of light through the control of the four dimmers. Up to $432^4$ kinds of light combinations are possible. The range of illuminance on workplane were measured as 7~1,831 ㏓. Improvement of psychological and physical functions for occupants can be expected according to control of lighting performances.

Quality Characteristics of Pleurotus eryngii Cultivated with Different Wavelength of LED Lights (LED광의 파장을 달리하여 재배한 새송이버섯의 품질특성)

  • Kim, Do-Hee;Choi, Hye-Jin;Jo, Woo-Sik;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.354-360
    • /
    • 2012
  • The effect of the wavelength of the light emitted by the light-emitting diode (LED) on the growth characteristics and physicochemical and sensory qualities of Pleurotus eryngii were investigated. Pleurotus eryngii were grown under different light sources: blue light (450 nm), red light (650 nm), green light (525 nm), UV-A (365 nm), and mixed light ($B^*R$, $B^*G$, $R^*G$, $B^*R^*G^*UV-A$). The quantity of LED light was set up at 50% (LED: 64.9-108.0 $pmolm-2{\cdot}s-1$;fluorescentlight:11.7lux). Fluorescent light was used as control. There were no significant differences in the flesh firmness. In the case of the Pleurotuseryngii cultivated under red, green, and mixed light ($R^*G$), the color of the pileus and the length of the stipe were similar to those of the control group. The sensory scores were not significantly different between the LED lights (red, green, and $R^*G$) and the control. Among the three LED light conditions, the sample cultivated under red light recorded the highest score. The samples under UV-A, blue, and mixed light ($B^*R$, $B^*G$, $B^*R^*G^*U$) had a dark pileus color and had a short stipe. These results showed that the wavelength of LED light affected the growth and quality characteristics of Pleurotus eryngii, and that using red LED light is preferable for the cultivation of Pleurotus eryngii with better quality.

Color Tuning of a Mn4+ Doped Phosphor : Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00) (Mn4+ 도핑된 형광체, Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00)의 Color Tuning)

  • Park, Woon Bae
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.163-167
    • /
    • 2017
  • Along with the progress of white LED technology, red phosphors have become increasingly important in industry and academia, and a more specific demand has steadily increased in the market. Red phosphors are used in high efficiency and high rendering LED lightings. However, using red phosphors with $Eu^{2+}$ activators caused color rewarming and reduced emission intensity in white LED chips due to strong reabsorption in the green or yellow wavelength range caused by the 4f-5d transition. $Mn^{4+}$ doped phosphors which have no such drawbacks and which can further improve the color rendering index (CRI) are now of great interest. However, $Mn^{4+}$-doped phosphors have a disadvantage in that the emission wavelength is determined depending on the host due to the $^2E_g{\rightarrow}^4A_2$ transition. In this study, the $SrO-BaO-GeO_2$ solid-solution was selected, and $Sr_{1-x}B_axGe_4O_9:Mn^{4+}{_{0.005}}$ ($0{\leq}x{\leq}1$) phosphors were synthesized and characterized. This led to a versatile color tuning in LED technology.

NTSC of LED-LCD System

  • Chiu, Tien-Lung;Ting, Chu-Chi;Tseng, Wet-Yang;Chieu, Chin-Cheng;Lo, Wei-Yu;Sun, Oliver
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.525-527
    • /
    • 2005
  • The LED light source has many excellent advantages for the application of LCD backlight module. As we know, the operational temperature can significantly influence the characteristics of LEDs. Heat can decrease LED's output light intensity and make its dominant wavelength (${\lambda}d$) drift. These two factors make display's color temperature change and induce different NTSC results. Here, we perform an important relation between NTSC and the above two factors of LED-LCD display.

  • PDF

Light Enhancement Al2O3 Passivation in InGaN/GaN based Blue Light-emitting Diode Lamps

  • So Soon-Jin;Kim Kyeong-Min;Park Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.775-779
    • /
    • 2006
  • In this study, sputtered $Al_2O_3$ thin films were evaluated as a passivation layer in the process of InGaN-based blue LEDs in order to improve the brightness of LED lamps. In terms of packaged LED lamps, lamps with $Al_2O_3$ passivation layer emanated higher brightness than those with $SiO_2$ passivation layer, and LED lamps with 90 nm $Al_2O_3$ passivation layer were the brightest among four kinds of lamps. Although lamps with $Al_2O_3$ passivation had a slight increase in operating voltage, their brightness was improved about 13.6 % compare to the lamps made of conventional LEDs without the changes of emitting wavelength.