• Title/Summary/Keyword: LED wavelength

Search Result 309, Processing Time 0.026 seconds

Increased Growth by LED and Accumulation of Functional Materials by Florescence Lamps in a Hydroponics Culture System for Angelica gigas (당귀의 수경재배에서 LED 광원에 의한 생장 증가와 형광등에 의한 기능성물질 축적)

  • Lee, Gong-In;Kim, Hong-Ju;Kim, Sung-Jin;Lee, Jong-Won;Park, Jong-Seok
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • Angelica gigas, belonging family Apiaceae, is a perennial and famous medical plant growing in Korea, Japan, and China. The aims of this study was to analyze the growth and accumulated Decursin and its precursor Decursinol angelate of A.gigas grown under fluorescent lamp and LED. A. gigas 'Manchu' were sowed and managed for seedlings stage in a glass house for 4 weeks. One hundred twenty seedlings with 3 true leafs were transplanted at an ebb & flow system with fluorescent lamp and LED [red: peak wavelength 660nm, blue: peak wavelength 455 nm, white = 3:2:4 ratio] irradiated at $180{\pm}7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at the top of plant canopy for 5 weeks. The number of leaves increased by 13.5% in the LED treatment, though it is not statistically significant. Leaf length/width ratio of A. gigas grown under the fluorescent lamps was 24% bigger than the LED treatment and also the stem was 13% larger. Maximum root length was similar to both groups. Fresh weight and dry weight of shoots grown under the LED increased by 50% and 42% and the both weights of roots increased by 125% and 45%, respectively. The contents of Decursin and Decursinol angelate grown under the florescent lamps were larger than LED by 188% and 27% in shoot and 78% and 8% in root. The contents of Decursin and Decursinol angelate per plant grown under LED and florescent lamps were 132mg and 122mg. In conclusion, functional materials in A. gigas were increased by florescent light and its growth was promoted by LEDs light.

Behavioral Monitoring System for Mud Shrimp Upogebia major and the Photoresponse to Illumination with Different Wavelength LEDs (쏙(Upogebia major)의 광반응 분석시스템 구축과 발광다이오드(Light-Emitting Diode) 파장별 행동분석)

  • Jang, Jun-Chul;Chung, Jong-Kyun;Hur, Youn-Seong;Song, Jae-Hee;Kim, Jong-Myoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.413-420
    • /
    • 2017
  • The increase in the number of mud shrimps Upogebia major is a concern because of their negative effects on shellfish aquaculture, including Manila clam Venerupis philippinatum along the west coast of Korea. This study developed a behavioral analysis system for aquatic animals using a set of monochromatic light-emitting diode (LED) modules covering the visible light range at similar intervals. Movements of mud shrimp were monitored using a tracking system under illumination with infra-red light and an LED of 660 nm wavelength without provoking stimulation. The minimum light intensity needed to induce a photoresponse by the mud shrimp was $10{\mu}mole/m^2/s$ under the conditions tested. Of the six kinds of LED illuminations tested, the most sensitive response was obtained with illumination with the 505 nm LED, followed in order by LEDs with peak wavelengths of $525nm{\fallingdotseq}465nm$ > $405nm{\fallingdotseq}590nm$ > 660 nm. These findings should help to identify LED sources that efficiently induce movement of the mud shrimp and also for monitoring movement without stimulating.

Effect of LED LightIrradiation on the Mycelial Growth and Fruit Body Development of Hypsizygus Marmoreus (LED 광원이 느티만가닥버섯 균의 균사 생장과 자실체 생육에 미치는 영향)

  • Kim, M.K.;Lee, Y.K.;Seo, G.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.99-112
    • /
    • 2020
  • A edible mushroom, Hypsizygus marmoreus is commercially cultivated. However, the researches of cultivation and physiological characteristics were not conducted in Korea. In this study, we conducted on artificial cultivation of H. marmoreus and elucidated the effect of light on the mycelial growth and fruit body development using LED light sources with different wavelength; blue (peak wave length 460nm), green(peak wave length 530nm), yellow(peak wave length 590nm), red(peak wave length 630nm), and white as positive control. Mycelial growth of H. marmoreus strains were inhibited about 30~40% in inhibition ratio under the illumination with blue, green, yellow LED light. However, red LED light was not inhibited. Elongation of stipe was effective under the long wave length such as yellow and red light. Abnormal fruit body was produced under the long wavelength and dark. However, development of pileus was effective under the short wavelength such as green and blue light. Also, as a result of cultivation with mixed light for high quality and harvest, many effective numbers and yields of fruiting bodies were obtained in the mixed treatment of blue and white light, and pileus developed well.

Properties of Y3Al5O12:Ce3+,Pr3+ Single Crystal for White Laser Lightings (백색 레이저 조명용 Y3Al5O12:Ce3+,Pr3+ 단결정 특성)

  • Kang, Taewook;Lim, Seokgyu;Kim, Jongsu;Lee, Bong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.37-41
    • /
    • 2018
  • $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was prepared by floating zone method. single crystal was confirmed to have a Ia-3d (230) space group of cubic structure and showed regular morphology. The optical properties, single crystal exhibited a emission band from green, yellow wide wavelength and 610nm, 640nm red wavelength vicinity. The luminance maintenance rate was decreased by phonon with increasing temperature, but high luminance is maintained more than powder phosphor. In addition, $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was applied to a high power blue laser diode, we implemented high power white laser lightings. and it was confirmed that thermal properties over time, due to the effective heat transfer of complete crystal structure. We confirmed that excellent radiant heat properties than powder phosphor was applied to a high power white laser diode.

Effect of Si-doping on the luminescence properties of InGaN/GaN green LED with graded short-period superlattice

  • Cho, Il-Wook;Lee, Dong Hyun;Ryu, Mee-Yi;Kim, Jin Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.280.1-280.1
    • /
    • 2016
  • Generally InGaN/GaN green light emitting diode (LED) exhibits the low quantum efficiency (QE) due to the large lattice mismatch between InGaN and GaN. The QE of InGaN-based multiple quantum wells (MQWs) is drastically decreased when an emission wavelength shifts from blue to green wavelength, so called "green gap". The "green gap" has been explained by quantum confined Stark effect (QCSE) caused by a large lattice mismatch. In order to improve the QE of green LED, undoped graded short-period InGaN/GaN superlattice (GSL) and Si-doped GSL (SiGSL) structures below the 5-period InGaN/GaN MQWs were grown on the patterned sapphire substrates. The luminescence properties of InGaN/GaN green LEDs have been investigated by using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The PL intensity of SiGSL sample measured at 10 K shows stronger about 1.3 times compared to that of undoped GSL sample, and the PL peak wavelength at 10 K appears at 532 and 525 nm for SiGSL and undoped GSL, respectively. Furthermore, the PL decay of SiGSL measured at 10 K becomes faster than that of undoped GSL. The faster decay for SiGSL is attributed to the increased wavefunction overlap between electron and hole due to the screening of piezoelectric field by doped carriers. These PL and TRPL results indicate that the QE of InGaN/GaN green LED with GSL structure can be improved by Si-doping.

  • PDF

Therapeutic Effects of LED Fusion of Two Wavelength Bands on Atopic Dermatitis of NC/Nga Mice (융합 LED 광선치료가 아토피 피부염에 미치는 영향)

  • Lee, Sangmin;Choi, Ji-Hye;Koo, Bon-Jun;Kwon, Jungkee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.552-559
    • /
    • 2022
  • Atopic dermatitis (AD) is a chronic inflammatory skin disease accompanied by severe itching, mainly before five. The aim of this study is to investigate the effects of 405 nm+850 nm LED light therapy on AD-like symptoms in NC/Nga mice. The mice were randomly placed in the normal (Vehicle), atopic dermatitis-induced (CON), and 405 nm + 850 nm LED light therapy (LED) groups. The LED experimental group conducted 405 nm+850 nm wavelength LED ray therapy for 10 minutes a day for seven days. LED light therapy research confirmed the improvement and improvement of Dermatics score and observed the reduction of epidermal tissue thickness caused by dermatitis. Based on the significant decrease of serum IL-1𝛽 and transdermal moisture loss and serum IgE concentration due to LED light therapy, LED light therapy can help restore normal skin conditions in mice that cause atopic dermatitis. This study showed the anti-atopic effect of infrared light and blue light. Light in mice with atopic dermatitis led to the simultaneous use of circular LEDs with two wavelengths.

A Basic Study on in-vitro Wound Healing Effect Using LED (LED를 활용한 in-vitro 피부 창상 치유 기초연구)

  • Jang, Won-jin;Kim, Do-Yun;Ryu, Yeon-ju;Park, Su-jin;Lee, Eonjin;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.542-544
    • /
    • 2022
  • In this study, a basic study was conducted to confirm the wound recovering ability using LEDs. After cultured fibroblast on 6-wells we formed a wound. Here, LEDs of a specific wavelength are irradiated and check the wound healing through Matlab image processing. As a result, it was confirmed that fibroblast recovered faster when LED was irradiated.

  • PDF

A Study on the Luminous Properties of the White-light-emitting Organic LED with Two-wavelength using DPVBi/Alg3:Rubrene Structure (DPVBi/Alg3:Rubrene 구조를 사용한 2-파장 방식의 백색유기발광소자의 발광특성에 관한 연구)

  • 조재영;최성진;윤석범;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.616-621
    • /
    • 2003
  • The white-light-emitting organic LED with two-wavelength was fabricated using blue emitting material(DPVBi) and a series of orange color fluorescent dye(Rubrene) by vacuum evaporation processes. The basic structure of white-light-emitting OLED was ITO/NPB(150$\AA$)/DPVBi(150$\AA$)/Alq$_3$:Rubrene(150$\AA$)/BCP(100$\AA$)/Alq$_3$(150$\AA$)/Al(600$\AA$). The changes of the CIE coordiante strongly depended on the doping concentration of Rubrene and the thickness of NPB layer. We obtained the white-light-emitting OLED close to the pure white color light and the CIE coordinate of the device was (0.315, 0.330) at applied voltage of 13V when the doping concentration of Rubrene was 0.5wt% and the thickness of NPB layer is 200$\AA$. At a current of 100mA/$\textrm{cm}^2$, the quantum efficiency was 0.35%.

A Study on Growth of the Green Leaf Lettuce Depends on PPFD and Light Quality of LED Lighting Source for Growing Plant (식물재배용 LED 광원의 광질과 PPFD에 따른 청치마상추의 성장에 관한 연구)

  • Yang, Jun-Hyuk;Choi, Won-Ho;Park, Noh-Joon;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.142-147
    • /
    • 2015
  • The artificial light sources for growth of plant are usually high-pressure sodium lamp, metal haloids lamp, and fluorescent light; however, these light sources have relatively weaker Red and Blue lights that are necessary for growth of plants. Especially the effect of Photosynthetic Photon Flux Density (PPFD) is pointed out as the weakness. Meanwhile, LED light source can be selected by specific wavelength to greatly improve the effect of PPFD. In this regard, this paper aims to investigate the promotion of plant growth by measuring photosynthetic photon flux density (hereafter referred to as PPFD) according to changes in light quality of the LED light sources. Towards this end, LED light sources for plant growth were produced with 4 kinds of mono-chromatic lights and 6 kinds of combined lights by mixing red, blue, green and white lights. A comparative analysis was conducted to investigate the effects of optical properties and PPFD on plants (green leaf lettuce) using the produced light sources. The results monochromatic light has fastest growth rate, but plant growth conditions have poor. This being so, mixed light is suitable for the green leaf lettuce.

Studies on LED Wavelength to Enhance Growth and Bio-active Compounds of Carrots (당근의 성장과 생리활성물질 함량을 증진시키는 LED 파장에 관한 연구)

  • Kang, Suna;Kim, Min-Jung;Kim, Bong Soo;Park, Sunmin
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.131-137
    • /
    • 2015
  • Commercial greenhouse plant factories are highly efficient for controlling external factors such as floods, drought, insects, air pollution etc. However, they require substantial startup & maintenance investments and experimental research to optimize production. These facilities are especially useful for urban farming where high efficiency in small spaces is required. In this study, we investigated whether light emitting diode (LED) lights with mixed dominant wavelengths (650 nm : 550 nm : 445 nm=8:1:1, 650 nm : 445 nm=6:4) can increase the growth rate and bio-active compound content of carrots in comparison to that of fluorescent light (FL). LED with mixed wavelength (650 nm : 550 nm : 445 nm=8:1:1) increased the total weight and root circumference of carrots compared to FL. However, ${\beta}$-carotene contents were not significant in LED (650 nm : 550 nm : 445 nm=8:1:1). However, LED (650 nm : 445 nm=6:4) increased the ${\beta}$-carotene (FL: 7.27, LED: 10.48 mg/g ${\beta}$-carotene dried weight). These results suggested that using LED light at the ideal wavelength, at the antithesis color of the plant, might enhance plant growth and bio-active compound contents.