• Title/Summary/Keyword: LED wavelength

Search Result 309, Processing Time 0.025 seconds

Visible Wavelength Photonic Insulator for Enhancing LED Light Emission

  • Ryoo, Kwangki;Lee, Jeong Bong
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2015
  • We report design and simulation of a two-dimensional (2D) silicon-based nanophotonic crystal as an optical insulator to enhance the light emission efficiency of light-emitting diodes (LEDs). The device was designed in a manner that a triangular array silicon photonic crystal light insulator has a square trench in the middle where LED can be placed. By varying the normalized radius in the range of 0.3-0.5 using plane wave expansion method (PWEM), we found that the normalized radius of 0.45 creates a large band gap for transverse electric (TE) polarization. Subsequently a series of light propagation simulation were carried out using 2D and three-dimensional (3D) finite-difference time-domain (FDTD). The designed silicon-based light insulator device shows optical characteristics of a region in which light propagation was forbidden in the horizontal plane for TE light with most of the visible light spectrum in the wavelength range of 450 nm to 600 nm.

Fruit Qualities of De-astringent Persimmon 'Fuyu' Affected by Various Light Sources under Low and High Temperatures before Storage of Harvested Fruit

  • Kim, Tae-Choon;Kim, Chul Min;Kim, Ho Cheol
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.260-267
    • /
    • 2019
  • Harvested de-astringent persimmon 'Fuyu' were treated with various lighting sources under low (3℃) and high (22℃) temperatures. The weight loss rate of fruits was lower in those with Red LED than Fluorescence and Blue LED under both temperature conditions. Hardness and soluble solid content of fruits were higher in those with 3℃ / Blue LED or mixed LED (Blue+Red LEDs). Beta-carotene and lycopene content of fruit peel were higher in those with 3℃ than 22℃ and with Red LED or light sources with mixed red wavelength under both temperatures. When the fruits treated with light and temperature were stored for 4 days under 3℃ / dark condition, the hardness of the fruits did not significant difference among the treatments. Taken together all the results, it would be best to treat it light sources mixed red wavelength under 3℃.

Comparison of Chromaticity coordinate and Dominant wavelength for General R/G/B/W LEDs Light Source (R/G/B 및 백색 LED광원의 색도좌표와 주파장의 비교 고찰)

  • Hwang, Myung-Keun;Cho, Mee-Ryoung;Shin, Sang-Wuk;Lee, Se-Hyun;Lee, Joo-Sung;Jung, Bong-Man
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.166-169
    • /
    • 2007
  • 최근에 정부의 "15/30 LED조명 보급정책"에 힘입어 개발된 8W급 조명용 LED광원의 CIE 색도좌표 (chromaticity coordinate)와 주파장(dominant wavelength)등을 측정 고찰 하였다. 적색(R), 녹색(G), 청색(B), 백색(W)순으로 주파장은 각각 620[nm], 531[nm], 465[nm], 579[nm]이고, 자극순도(excitation purity)는 0.98, 0.82, 0.97, 0.15이며, 휘도순도(colorimetric putity)는 45[%], 16[%], 279[%], 6[%]로 나타났다. Power LED의 최적배치 설계로서, 특히 백색 LED광원의 경우 백열전구(15 lm/W)에 비해 3배 이상의 높은 효율(47.71m/W)을 보였고, 배광측정에서는 78.7%의 효율로 나타났다. 현재 LED광원은 MR16이나 베이스 타입 등의 형태로 제작하여 스탠드, 복도등, 비상유도등, 침실용 등의 용도에 사용되고, 일부는 LED의 원형이나 면(flat)타입으로 가로등이나 투광등으로도 활용되고 있다. 따라서 이들에 대한 각각의 특성들을 제시해 둘 필요성인 인지되어 국내 최초로 개발된 R/G/B/W 8W급 LED광원에 대한 기본적인 광특성 결과를 얻었으며, 이중에서 HB 백색 LED램프의 색도좌표 값을 얻어 CIE표준광과의 색도좌표(x, y) 위치를 비교 검토할 수 가 있었다.

  • PDF

Effect of LED Light on Primordium Formation, Morphological Properties, Ergosterol Content and Antioxidant Activity of Fruit Body in Pleurotus eryngii (LED광원이 큰느타리버섯 자실체의 발생, 생육, 에르고스테롤 함량 및 항산화활성에 미치는 영향)

  • Jang, Myoung-Jun;Lee, Yun-Hae;Kim, Jeong-Han;Ju, Young-Cheol
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.175-179
    • /
    • 2011
  • Light wavelength is the major factor of fruit body development associated with mushroom cultivation, but its wavelength range in Pleurotus eryngii is poorly understood. Using four kinds of light emitting diode (LED) including blue (475 nm), green (525 nm), yellowed (590 nm) and red (660 nm), we investigated to elucidate suitable light wavelength during primordium formation and fruit body development of P. eryngii on bottle cultivation. Primordia formation did not occur in blue light and red light. The morphological properties of fruit body in fluorescent lamp and blue light irradiation were showed thicker and larger pileus than those in other LEDs. However, length of stipe in fluorescent lamp and blue light was shorter than that of other LEDs. The DPPH radical was high in blue light, green light, and yellow light except for red light, and the polyphenol was high in four kinds of LED sources. And ergosterol was the highest in the green light. Thus, the high-quality mushroom production of P. eryngii is possible to green light condition considering productivity and functional materials.

Blue-Light Hazards of 405 nm Sterilization LED Lamps (405 nm 살균용 UV LED 등기구의 청색광 위해에 관한 연구)

  • Hyeon-seok Heo;Chung-hyeok Kim;Ki-ho Nam;Jin-sa Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.266-274
    • /
    • 2023
  • Recently, sterilization technology has received increasing interest due to the COVID-19 pandemic and required safety precautions. Particularly, sterilization devices using near ultraviolet (UV) with a 405 nm wavelength are also drawing attention. It has a UV-C wavelength and other sterilization effects. Its blue-colored light on the boundary between UV and visible light is used as a light-emitting diode (LED) lamp for 405 nm sterilization, owing to its longer wavelengths than UV rays. However, the 405 nm wavelength contains blue light that can damage the eyes and skin during prolonged exposures and affect the emotional and biological parts of the body. Currently, 405 nm sterilization LED light registers are circulating in the market. However, they have not undergone safety tests for blue-light hazards. Thus, with the active distribution of sterilization LED lights, solid safety standards and management systems are essential to protect users from blue-light hazards. Accordingly, in this study, we conducted spectral radiance and spectral radiative luminance tests on 405 nm sterilization LED registers available in the market by the measurement criteria of IEC 62471. Safety standards must be established to secure users' safety against blue light hazards at a time when 405nm sterilization LED lights are actively distributed due to COVID-19.

Fabrication of a Water Sterilization System Utilizing a 275 nm-wavelength UVC LED and TIR Lens-equipped Light Source (275 nm UVC LED와 TIR 렌즈 장착 광원을 이용하는 물 살균장치 제작)

  • Kawan Anil;Seung Hui Yu;Seung Hoon Yu;J. A. Park;I. S. Shin;S. J. Lee;Y. B. Kim;Y. B. Kown;D. G. Han;Soon Jae Yu;Heetae Kim;Seong Bae Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.84-87
    • /
    • 2024
  • A water sterilization system is developed utilizing a 275 nm-wavelength LED light source equipped with a TIR lens. The system's light source is constructed by combining a 275 nm-wavelength UVC LED, known for its germicidal properties, with a TIR lens having a direction angle of 6.8 degrees. The optical simulation software 'LightTools' is employed to design and optimize the intensity of deep ultraviolet sterilizing light irradiation, its distribution, and sterilization capacity. In the inactivation experiment with E. coli, the water sterilizer system achieved a sterilization rate of 78.92 % while maintaining a water flow capacity of 50 L/min. Compared to the conventional mercury lamp light source water sterilizer system, the UVC LED water sterilizer system addresses environmental concerns related to mercury usage and offers advantages in terms of lifespan and durability.

  • PDF

Quantifying of Photon Flux Emitting from Light-emitting Diodes Using a Quantum Sensor and Spectroradiometer (광량자센서와 분광광도계를 이용한 발광다이오우드 광량자속의 정량화)

  • 김용현;박현수
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.223-229
    • /
    • 2000
  • This study was conducted to analyze the opto-electric characteristics of light-emitting diodes(LED) designed for growth and morphogenesis control of transplant and to quantify the photon flux emittig from LED using a quantum sensor spectroradiometer. Difference in photon flux for blue and red LED between measured by a quantum sensor and measured by a spectroradiometer and numerically integrated was not observed. This result implies a spectroradiometer can be applied to quantify the photon flux emitting from far-red LED, which can not be measured using a quantum sensor. Since photon flux increases in proportion to wavelength, photon flux of LED modules arranged for red and far-red increased in proportion to wavelength, photon flux of LED modules arranged for red and rar-red increased gradually as the number of LED stick emitting far-red in LEd modules increased. Illumination of LED modules arranged for red and far-red decreased as the number of LED stick emitting far-red in LED modules increased. There was no difference in irradiance between LED modules arranged for red and far-red.

  • PDF

Design and characteristics of a fiber-optic pressure sensor (광압력 센서의 설계 및 특성)

  • Kim, Young-Soo;Kim, Yo-Hee;Strigalev, V. E.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.508-510
    • /
    • 1995
  • A fiber-optic pressure sensor is fabricated with a photoelastic glass material. To remove the influence of external pertubation along the optical fiber, a new referencing technique is proposed by using two light sources. LED with 870nm wavelength is used as light source for reference signal, and LED with 660nm wavelength is used as light source for modulation signal. The fiber-optic pressure sensor system shows good linearity within the pressure range of 0 to 5 $kg/cm^2$.

  • PDF

Utilization Efficiencies of Electric Energy and Photosynthetically Active Radiation of Lettuce Grown under Red LED, Blue LED and Fluorescent Lamps with Different Photoperiods

  • Lee, Hye In;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • Purpose: This study was conducted to analyze the utilization efficiencies of electric energy and photosynthetically active radiation of lettuce grown under red LED, blue LED and fluorescent lamps with different photoperiods. Methods: Red LED with peak wavelength of 660 nm and blue LED with peak wavelength of 450 nm were used to analyze the effect of three levels of photoperiod (12/12 h, 16/8 h, 20/4 h) of LED illumination on light utilization efficiency of lettuce grown hydroponically in a closed plant production system (CPPS). Cool-white fluorescent lamps (FL) were used as the control. Photosynthetic photon flux, air temperature and relative humidity in CPPS were maintained at 230 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $22/18^{\circ}C$ (light/darkness), and 70%, respectively. Electric conductivity and pH were controlled at 1.5-1.8 $dS{\cdot}m^{-1}$ and 5.5-6.0, respectively. The light utilization efficiency based on the chemical energy converted by photosynthesis, the accumulated electric energy consumed by artificial lighting sources, and the accumulated photosynthetically active radiation illuminated from artificial lighting sources were calculated. Results: As compared to the control, we found that the accumulated electric energy consumption decreased by 75.6% for red LED and by 70.7% for blue LED. The accumulated photosynthetically active radiation illuminated from red LED and blue LED decreased by 43.8% and 33.5%, respectively, compared with the control. The electric energy utilization efficiency (EEUE) of lettuce at growth stage 2 was 1.29-2.06% for red LED, 0.76-1.53% for blue LED, and 0.25-0.41% for FL. The photosynthetically active radiation utilization efficiency (PARUE) of lettuce was 6.25-9.95% for red LED, 3.75-7.49% for blue LED, and 2.77-4.62% for FL. EEUE and PARUE significantly increased with the increasing light period. Conclusions: From these results, illumination time of 16-20 h in a day was proposed to improve the light utilization efficiency of lettuce grown in a plant factory.

Effect of LED with Mixed Wavelengths on Bio-active Compounds in Cherry Tomato and Red Cabbage (혼합파장의 LED를 광원으로 재배한 방울토마토와 적채의 생리활성물질 함량 분석)

  • Kang, Suna;Yang, Hye Jeong;Ko, Byoung Seob;Kim, Min Jung;Kim, Bong Soo;Park, Sunmin
    • Korean journal of food and cookery science
    • /
    • v.31 no.4
    • /
    • pp.505-509
    • /
    • 2015
  • Light emitting diodes (LED) are able to selectively control the wavelength of light, enabling them to enhance photosynthesis by increasing specific wavelengths. The objectives of this study were to determine the effects of LED light exposure with various wavelengths (630 nm: 550 nm: 450 nm=8:1:1) on plant growth and bio-active compound concentrations in cherry tomato and red cabbage. With cherry tomatoes, LED decreased the number of fruits compared to fluorescent light (FL) but resulted in a significantly higher value in the total weight of the fruits and in sugar content. However, lycopene contents were not significantly different between the groups. With red cabbages, the weight and length were both significantly higher in the LED group than in the FL group. Furthermore, the anthocyanin contents in the red cabbage LED group were two times higher than those of the FL group. These results suggested that exposure to LED light with a high ratio of red wavelength can increase the anthocyanins contents in red cabbages but not the lycopene content in cherry tomatoes. Further studies will be needed to determine which LED wavelength can enhance lycopene content in cherry tomatoes.