DOI QR코드

DOI QR Code

Effect of LED with Mixed Wavelengths on Bio-active Compounds in Cherry Tomato and Red Cabbage

혼합파장의 LED를 광원으로 재배한 방울토마토와 적채의 생리활성물질 함량 분석

  • Kang, Suna (Dept. of Food and Nutrition, Obesity/Diabetes Center, Hoseo University) ;
  • Yang, Hye Jeong (Food Functional Research Division, Korean Food Research Institutes) ;
  • Ko, Byoung Seob (Korea Institute of Oriental Medicine) ;
  • Kim, Min Jung (Food Functional Research Division, Korean Food Research Institutes) ;
  • Kim, Bong Soo (Dept. of R&D, Korea Parus) ;
  • Park, Sunmin (Dept. of Food and Nutrition, Obesity/Diabetes Center, Hoseo University)
  • 강선아 (호서대학교 자연과학대학 비만당뇨연구소 식품영양학전공) ;
  • 양혜정 (한국식품연구원) ;
  • 고병섭 (한국한의학연구원) ;
  • 김민정 (한국식품연구원) ;
  • 김봉수 (한국파루스 R&D팀) ;
  • 박선민 (호서대학교 자연과학대학 비만당뇨연구소 식품영양학전공)
  • Received : 2015.06.10
  • Accepted : 2015.07.28
  • Published : 2015.08.31

Abstract

Light emitting diodes (LED) are able to selectively control the wavelength of light, enabling them to enhance photosynthesis by increasing specific wavelengths. The objectives of this study were to determine the effects of LED light exposure with various wavelengths (630 nm: 550 nm: 450 nm=8:1:1) on plant growth and bio-active compound concentrations in cherry tomato and red cabbage. With cherry tomatoes, LED decreased the number of fruits compared to fluorescent light (FL) but resulted in a significantly higher value in the total weight of the fruits and in sugar content. However, lycopene contents were not significantly different between the groups. With red cabbages, the weight and length were both significantly higher in the LED group than in the FL group. Furthermore, the anthocyanin contents in the red cabbage LED group were two times higher than those of the FL group. These results suggested that exposure to LED light with a high ratio of red wavelength can increase the anthocyanins contents in red cabbages but not the lycopene content in cherry tomatoes. Further studies will be needed to determine which LED wavelength can enhance lycopene content in cherry tomatoes.

본 연구는 식물 공장에서 특정 파장을 조합한 혼합 LED를 광원으로 사용하여 방울토마토와 적채를 재배할 때 식물의 성장과 각각에 존재하는 생리활성물질인 리코펜과 안토시아닌의 함량 변화를 탐색하였다. 대조광으로 형광등을 사용하였고 LED 혼합 파장은 적색, 녹황색, 청색 파장(630 nm:550 nm:450 nm=8:1:1)을 혼합하여 방울토마토와 적채에 조사하였다. 방울토마토에서는 LED을 조사하였을 때, 수확되는 방울토마토의 개수는 적었으나 수확된 방울토마토의 무게와 당도에서 유의적으로 높은 값을 나타내었다. 그러나 방울토마토의 생리활성 물질인 리코펜의 함량은 LED 조사 시 오히려 낮았다. 적채는 LED를 조사하였을 때, 형광등에 비해 적체의 무게에서 유의적으로 높은 값을 나타내었고, 안토시아닌 함량 또한 유의적으로 증가시켰다. 결론적으로 작물의 색에 따라 성장에 요구하는 LED의 파장 및 혼합 비율이 다르다는 것을 알았고, 과실의 색에 따라 LED 파장의 혼합 비율을 달리하는 것이 필요하다는 것을 보여주었다.

Keywords

References

  1. Bian ZH, Yang QC, Liu WK. 2015. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J Sci Food Agric 95(5):869-877 https://doi.org/10.1002/jsfa.6789
  2. Chiang SS, Pan TM. 2013. Beneficial effects of phytoestrogens and their metabolites produced by intestinal microflora on bone health. Appl Microbiol Biotechnol 97(4):1489-1500 https://doi.org/10.1007/s00253-012-4675-y
  3. Ellinger S, Ellinger J, Stehle P. 2006. Tomatoes, tomato products and lycopene in the prevention and treatment of prostate cancer: do we have the evidence from intervention studies? Curr Opin Clin Nutr Metab Care 9(6):722-727 https://doi.org/10.1097/01.mco.0000247470.64532.34
  4. Fred S, Thomas G, Kim JK. 2005. Light emitting diode. Kirk-Othmer Encyclopedia Chem Tech 2(1):1-33
  5. Joon KK, Kyoung SP, Yun IK, Hyo GC. 2011. Effect of LED light source and intensity on growth and quality of greenhouse grown tomato. Korean J Hort Sci Technol 29(1):73-74
  6. Li HM, Tang CM, Xu ZG, Liu XY, Han XL. 2012. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J Agric Sci 4(4):262-273
  7. Liu XY, Chang TT, Guo SR, Xu ZG, Chen WH. 2010. Effect of irradiation with blue and red LED on fruit quality of cherry tomato during growth period. China Veget 22(1):1-6
  8. Liu XY, Guo SR, Xu ZG, Jiao XL, Takafumi T. 2011. Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes. Hort Sci 46(2):217-221
  9. Mizuno T, Amaki W, Watanabe H. 2011. Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Acta Hortic 907(1):179-184
  10. Monica G, Ronald EW. 2001. Characterization and measurement of anthocyanins by UV-Visible Spectroscopy. Food Anal Chem 12(1):1-13
  11. Noh HJ, Jang SY, Park JJ, Yun HS, Park S. 2013. Browning prevention of black carrot extract and the quality characteristics of jelly supplemented with black carrot extract. J Korean Soc Food Culture 28(3):293-302 https://doi.org/10.7318/KJFC/2013.28.3.293
  12. Olle M, Virsile A. 2013. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric Food Sci 22(2):223-234
  13. Samuolien G, Sirtautas R, Brazaityt A, Duchovskis P. 2012. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem 134(3):1494-1499 https://doi.org/10.1016/j.foodchem.2012.03.061
  14. Stutte GW, Edney S, Skerritt T. 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. Hort Sci 44(1):79-82
  15. Xu HI, Xu QC, Li FL, Feng TZ, Qin FF, Fang W. 2012. Applications of xerophytophysiology in plant production-LED blue light as a stimulus improved the tomato crop. Sci Hortic 148(1):190-196 https://doi.org/10.1016/j.scienta.2012.06.044
  16. Yeh N, Chung JP. 2009. High-brightness LEDs-Energy efficient lighting sources and their potential in indoor plant cultivation. Renewable Sustainable Energy Rev 13(8):2175-2180 https://doi.org/10.1016/j.rser.2009.01.027