• Title/Summary/Keyword: LED wavelength

Search Result 312, Processing Time 0.036 seconds

A Study of Different Sources and Wavelengths of Light on Laying Egg Characteristics in Laying Hens (산란계에 대한 점등 광원 및 파장 차이에 따른 산란 특성에 관한 연구)

  • Kim, Min-Ji;Choi, Hee-Chul;Suh, Ok-Suk;Chae, Hyun-Suk;Na, Jae-Cheon;Bang, Han-Tae;Kim, Dong-Wook;Kang, Hwan-Ku;Park, Sung-Bok
    • Korean Journal of Poultry Science
    • /
    • v.37 no.4
    • /
    • pp.383-388
    • /
    • 2010
  • The chicken eye can discriminate light color, and different light wavelengths may affect reproduction ability. This study was carried out to identify effect of monochromatic light using light emitting diode (LED) in laying hens. Chickens were exposed to white light (WL), blue light (BL), yellow light (YL), green light (GL) and red light (RL) made by using LED as well as incandescent light (IL) (control). All light sources were equalized to a light intensity of 20 lux. The results indicated that the age of first egg laying and 50 % egg laying in laying hens treated under RL is significantly younger than under other lights (P<0.05). And the ovary weight of laying hens reared under RL is significantly heavier than under other at from 16 to 20 wks (P<0.05). The largest number of eggs production was produced in a group with treated with RL by 59 wks of age compared with any other group. The egg weight of YL was greater than other treatment groups from 26 to 45 wks (P<0.05). The egg shell from hens treated with RL was the strongest and thickest at 20 wk (P<0.05). These results suggest that the egg quality of laying hens reared in different spectrum of LED can be different and RL may enhance the laying performance.

Effect of LED Light Colors on Egg Production, Egg Quality and Reproductive Hormone Concentrations of Plasma and Oviduct in Brown Laying Hens Housed on Floor (LED 조명의 색이 평사 사육 갈색 산란계의 산란성적, 계란 품질 및 혈액과 난관 내 번식 호르몬 농도에 미치는 영향)

  • Kim, Hee Na;Ko, Han Seo;Jang, Hyun Soo;Kang, Yu Hyun;Seo, Jee Soo;Kang, Hwan Ku;Ohh, Sang Jip
    • Korean Journal of Poultry Science
    • /
    • v.45 no.4
    • /
    • pp.245-252
    • /
    • 2018
  • This study investigated the effect of LED light wavelength (color) on reproductive hormones and egg production of brown laying hens raised on floor. Red, blue, green and white colors of LED light were four treatments with four pens per treatment. One hundred forty four Hy-line brown laying hens (47 wks old) were allocated in a floor pen for six weeks trial. Egg production, egg quality, yolk cholesterol and hormones ($17{\beta}$-estradiol, progesterone) concentrations in plasma and oviduct were analyzed. Egg production of red group was higher (P<0.01) than that of green group. Haugh unit of eggs from red group was higher (P<0.01) than that of blue and green groups. Egg weight of green group was heavier (P<0.05) than that of red group. Shell of blue group was stronger (P<0.05) than that of red and white groups. Shell color of white group was browner (P<0.01) than that of blue and green groups. Yolk cholesterol of red group was higher (P<0.01) than that of others. Plasma $17{\beta}$-estradiol of red group was higher (P<0.05) than that of others at $3^{rd}$ week, but that of white group was highest (P<0.05) at $6^{th}$ week. Oviduct progesterone of green group was higher (P<0.01) than that of others. The result showed that the LED colors affect the reproductive hormone concentrations, egg production, egg weight and egg quality. This study suggested that red LED would be the most appropriate color for floor raising brown laying hens to sustain the egg production when it begins to decline with aging.

Luminescence properties of InGaN/GaN green light-emitting diodes grown by using graded short-period superlattice structures

  • Cho, Il-Wook;Na, Hyeon Ji;Ryu, Mee-Yi;Kim, Jin Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.279.2-279.2
    • /
    • 2016
  • InGaN/GaN multiple quantum wells (MQWs) have been attracted much attention as light-emitting diodes (LEDs) in the visible and UV regions. Particularly, quantum efficiency of green LEDs is decreased dramatically as approaching to the green wavelength (~500 nm). This low efficiency has been explained by quantum confined Stark effect (QCSE) induced by piezoelectric field caused from a large lattice mismatch between InGaN and GaN. To improve the quantum efficiency of green LED, several ways including epitaxial lateral overgrowth that reduces differences of lattice constant between GaN and sapphire substrates, and non-polar method that uses non- or semi-polar substrates to reduce QCSE were proposed. In this study, graded short-period InGaN/GaN superlattice (GSL) was grown below the 5-period InGaN/GaN MQWs. InGaN/GaN MQWs were grown on the patterned sapphire substrates by vertical-metal-organic chemical-vapor deposition system. Five-period InGaN/GaN MQWs without GSL structure (C-LED) were also grown to compare with an InGaN/GaN GSL sample. The luminescence properties of green InGaN/GaN LEDs have been investigated by using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The PL intensities of the GSL sample measured at 10 and 300 K increase about 1.2 and 2 times, respectively, compared to those of the C-LED sample. Furthermore, the PL decay of the GSL sample measured at 10 and 300 K becomes faster and slower than that of the C-LED sample, respectively. By inserting the GSL structures, the difference of lattice constant between GaN and sapphire substrates is reduced, resulting that the overlap between electron and hole wave functions is increased due to the reduced piezoelectric field and the reduction in dislocation density. As a results, the GSL sample exhibits the increased PL intensity and faster PL decay compared with those for the C-LED sample. These PL and TRPL results indicate that the green emission of InGaN/GaN LEDs can be improved by inserting the GSL structures.

  • PDF

Growth of InGaN/AlGaN heterostructure by mixed-source HVPE with multi-sliding boat system (Multi-sliding boat 방식을 이용한 혼합소스 HVPE에 의한 InGaN/AlGaN 이종 접합구조의 성장)

  • Jang, K.S.;Kim, K.H.;Hwang, S.L.;Jeon, H.S.;Choi, W.J.;Yang, M.;Ahn, H.S.;Kim, S.W.;Yoo, J.;Lee, S.M.;Koike, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.162-165
    • /
    • 2006
  • The selective growth of InCaN/AlGaN light emitting diodes was performed by mixed-source hydride vapor phase epitaxy (HVPE). In order to grow the InGaN/AlGaN heterosturcture consecutively, a special designed multi-sliding boat was employed in our mixed-source HVPE system. Room temperature electroluminescence spectum of the SAG-InGaN/AlGaN LED shows an emission peak wavelength of 425 nm at injection current 20 mA. We suggest that the mixed-source HVPE method with multi-sliding boat system is possible to be one of the growth methods of III-nitrides LEDs.

Effects of Light Color on Energy Expenditure and Behavior in Broiler Chickens

  • Kim, Nara;Lee, Sang-Rak;Lee, Sang-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1044-1049
    • /
    • 2014
  • This study was conducted in order to investigate whether the presence of light or different colors of light would influence the energy expenditure and behavior of broiler chickens. Eight 8-week-old broiler chickens were adapted to a respiration chamber (Length, 28.5 cm; Height, 38.5 cm; Width, 44.0 cm) for one week prior to the initiation of the experiment. In experiment 1, energy expenditure and behavior of the chickens were analyzed in the presence or absence of light for four days. Chickens were exposed to 6 cycles of 2 h light/2 h dark period per day. In experiment 2, the broiler chickens that had been used in experiment 1 were used to evaluate the effect of 4 different wavelength light-emitting diodes (LEDs) on the energy expenditure and behavior of broiler chickens. The LEDs used in this study had the following wavelength bands; white (control), red (618 to 635 nm), green (515 to 530 nm) and blue (450 to 470 nm). The chickens were randomly exposed to a 2-h LED light in a random and sequential order per day for 3 days. Oxygen consumption and carbon dioxide production of the chickens were recorded using an open-circuit calorimeter system, and energy expenditure was calculated based on the collected data. The behavior of the chickens was analyzed based on following categories i.e., resting, standing, and pecking, and closed-circuit television was used to record these behavioral postures. The analysis of data from experiment 1 showed that the energy expenditure was higher (p<0.001) in chickens under light condition compared with those under dark condition. The chickens spent more time with pecking during a light period, but they frequently exhibited resting during a dark period. Experiment 2 showed that there was no significant difference in terms of energy expenditure and behavior based on the color of light (white, red, green, and blue) to which the chickens were exposed. In conclusion, the energy expenditure and behavior of broiler chickens were found to be strongly affected by the presence of light. On the other hand, there was no discernible difference in their energy expenditure and behavior of broiler chickens exposed to the different LED lights.

Non-invasive hematocrit measurement (혈액중 non-invasive hematocrit 분석)

  • Yoon, Gil-Won;Jeon, Kye-Jin;Park, Kun-Kook;Lee, Jong-Youn;Hwang, Hyun-Tae;Yeo, Hyung-Seok;Kim, Hong-Sig
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2002.11a
    • /
    • pp.59-62
    • /
    • 2002
  • Wavelength selection and prediction algorithm for determining hematocrit are investigated. A model based on the difference in optical density induced by the pulsation of heart beat is developed by taking approximation of Twersky's theory on the assumption that the variation of blood vessel size is small during arterial pulsing[1]. A device is constructed with a five-wavelength LED array as light source. The selected wavelengths are two isobestic points and three in compensation for tissue scattering. Data are collected from 549 out-patients who are randomly grouped as calibration and prediction sets. The range of percent hematocrit was 19.3∼51.8. The ratio of the variations of optical density between systole and diastole at two different wavelengths is used as a variable. We selected several such variables that show high reproducibility among all variables. Multiple linear regression analysis is made. The relative percent error is 8% and the standard deviation is 3.67 for the calibration set. The relative % error and standard deviation of the prediction set are 8.2% and 3.69 respectively. We successfully demonstrate the possibility of non-invasive hematocrit measurement, particularly, using the wavelengths below 1000nm.

  • PDF

Action of various wavelengths of visible light on U.V.-radiation damage to yeast cells. (효모세포의 자외선조해효과에 대한 각종 파장 광선의 작용)

  • 이민재;이광웅
    • Korean Journal of Microbiology
    • /
    • v.6 no.4
    • /
    • pp.122-130
    • /
    • 1968
  • Action of various wavelengths of visible light on ultraviolet-radiation damage to haploid yeast cells, Saccharomyces cerevisiae 23971, was studied. The results were obtained on the basis of the survival and respiration rates by pre- and post-illuminations of various wavelengths before and after U.V.-irradiations on the yeast cells. Among the wavelengths tested, 635 $m{\mu}$, 429 $m{\mu}$ and white light which caused increase of respiration in pre-treatment alone, induced less resistance to the U. V.-damage than in the control, in both pre- and U.V.-treatment. On the contrary, such wavelengths as 574 $m{\mu}$and 530 $m{\mu}$, showing a weak effect on respiration in pre-treatment increased the susceptability to U.V.-radiation. Photoinactivation was generally obtained by both pre- and post- illuminations along with U.V.-treatment. At 635 $m{\mu}$ the PI rate was the lowest and also a low PI rate was shown at 429 $m{\mu}$. But 429 $m{\mu}$, in the post-treatment of the yeast cells pre-treated by the white light and the darkness respectively, showed the highest PI rate. In both pre- and post- treatment of 574, 530 and 473 $m{\mu}$,the PI rates were high to the same degree. Post-treatments of the wavelengths on U.V.-treated yeasts incubated rather under the white light than the darkness induced lower PI rate. It is assumed that there are great differences in action even of the same wavelength, depending upon the various combination of pre- and post-treatments, and that, moreover, the action of various wavelengths of visible light on U.V.-damage on the cells are concerned with the doses and dose rates of U.V. and visible lights. These observations led to an interpretation that each wavelength of visible light might exert distinctively different effects oil U. V.-damage, mainly causing the inhibition or stimulation of enzymes in the yeast cells.

  • PDF

Effects of Daylength Extension by Red Light in Strawberry Cultivation (적색광에 의한 딸기재배의 일장연장 효과)

  • Hong, Seung-Chang;Kim, Min-Kyeong;Kim, Myung-Hyun;Choe, Soon-Kun;Eo, Jin-Woo;Jung, Goo-Bok;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2014
  • BACKGROUND: Many strawberry growers are utilizing daylength extension by using incandescent bulb or fluorescent lamp to break dormancy of strawberry induced by low temperature and short day conditions. Conventional incandescent bulb and fluorescent lamp consume a lot of electricity and have short longevity. Red light known for most efficient wavelength for daylength extension light of short-day plant and long-day plant. This study was conducted to verify the effects of red light to enhance growth and to increase production of strawberry (Fragaria ${\times}$ ananassa Duch. cvs. "Seolhyang") METHODS AND RESULTS: Three red light (660nm) of 0.70, 0.87, and $1.05{\mu}mol/m^2/s$ (PAR) and conventional incandescent bulb of 40 Lux were treated respectively under the pot experiment. All treatment irradiated from 18:00 to 24:00 for 6 hours. Red light treatment tend to increase leaf stem number, flower stem number, weight of flower stem, crown weight, root weight, and leaf area of strawberry then incandescent bulb treatment. In field experiment, red light of $0.7{\mu}mol/m^2/s$ (PAR) and conventional incandescent bulb of 40 Lux were irradiated respectively. Field experiment showed that the leaf number, leaf weight, and crown weight of strawberry increased than those of incandescent bulb control with red LED of $0.7{\mu}mol/m^2/s$ (PAR). Red LED treatment increased the fruit number over 15g than incandescent bulb. Furthermore, red LED treatment decreased fruit number below 15g of strawberry than incandescent bulb treatment. Therefore, We believed that red LED treatment increased marketable fruit number by increment of weight of each fruit. Consequently, marketable fruit number, fruit weight, and fruit production of strawberry were increased than those of incandescent bulb by 5 %, 2.9 %, and 8.5 % respectively, but not showed significantly differences. CONCLUSION: These results presumably due to directly enhanced photosynthesis of strawberry leaves and activated action of Pfr phytochrome form by red light. In conclusion, red LED of 660nm could be used for daylength extension light source to enhance production of strawberry.

A Comparative Study of Physiological Activity and Ingredient Analysis of Glycyrrhiza uralensis Fischer Stems and Leaves Cultivated with Different Wavelength of LED Lights (LED광원에 따른 감초 지상부의 생리활성 및 성분 평가)

  • Bang, Keuk Soo;Chang, Young Nam;Jin, Jong Sik;Park, Sang A;Lim, Jae Soo;Park, Jeong Sub;Kim, Jong Sung;Lee, Jeong Ho
    • Korean Journal of Plant Resources
    • /
    • v.28 no.1
    • /
    • pp.126-134
    • /
    • 2015
  • Glycyrrhiza uralensis Fischer is one of the most commonly used herbs. Recently, the stem and leave of the plant have been interested in physiological activities because the aerial parts have been thrown away. Finding out cultivation method of Glycyrrhiza uralensis Fischer to improve chemical ingredients and biological activities has been tried these days. In this study, different wavelengths of light emitting diode (LED) were used for a cultivation of Glycyrrhiza uralensis Fischer. Antioxidant activities and inhibitory effect on mutagenecity of samples were evaluated. The stem and leave cultivated under blue light (BL-0) showed the strongest antioxidant activities of $3.02{\pm}0.13{\mu}g/ml$ ($EC_{50}$) and $2.18{\pm}0.18{\mu}g/ml$ ($EC_{50}$) in DPPH and ABTS radical scavenging test, respectively. Total phenolic content of BL-0 was $2.93{\pm}0.11g/100g$, the highest value between cultivation conditions. However, antioxidant activities of the stem and leave cultivated under red light were the weakest between samples. All of the stem and leave used in this study showed inhibitory effect on mutagenecity of 1-nitropyrene. BL-0 showed stronger inhibitory effects on mutagenicity of Trp-P-1, Trp-P-2, and AFB1 than samples cultivated under other conditions. Only on mutagenecity of 2-aminoanthracene, the stem and leave cultivated at 1 m apart from red light (RL-1) showed the strongest inhibitory effect. These results indicate that blue LED might be the most effective condition for improvement of physiological activities for the aerial parts of Glycyrrhiza uralensis Fischer in cultivation. The components were identified with GC/MS. Cytidine was detected only in RL-1 at 25 min of retention time and 2-bromotrimethylene glycol was detected only in BL-0 at 37 min.

Use of tar color additives as a light filter to enhance growth and lipid production by the microalga Nannochloropsis gaditana

  • Shin, Won-Sub;Jung, Simon MoonGeun;Cho, Chang-Ho;Woo, Do-Wook;Kim, Woong;Kwon, Jong-Hee
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.205-209
    • /
    • 2018
  • The spectral composition of light can affect the growth and biochemical composition of photosynthetic microalgae. This study examined the use of light filtering through a solution of soluble colored additives, a cost-effective method to alter the light spectrum, on the growth and lipid production of an oleaginous microalga, Nannochloropsis gaditana (N. gaditana). Cells were photoautotrophically cultivated under a white light emitting diode (LED) alone (control) or under a white LED that passed through a solution of red and yellow color additive (4:1 ratio) that blocked light below 600 nm. The specific growth rate was significantly greater under filtered light than white light ($0.2672d^{-1}$ vs. $0.1930d^{-1}$). Growth under filtered light also increased the fatty acid methyl ester (FAME) yield by 22.4% and FAME productivity by 80.0%, relative to the white light control. In addition, the content of saturated fatty acids was greater under filtered light, so the biodiesel products had better stability. These results show that passing white light through an inexpensive color filter can simultaneously enhance cellular growth and lipid productivity of N. gaditana. This approach of optimizing the light spectrum may be applicable to other species of microalgae.