• Title/Summary/Keyword: LED Signal

Search Result 466, Processing Time 0.024 seconds

Effects of Light Quality Using LEDs on Expression Patterns in Brassica rapa Seedlings (LED 광원의 다양한 광질이 배추 유묘의 유전자 발현에 미치는 영향)

  • Kim, Jin A;Lee, Yeon-Hee;Hong, Joon Ki;Hong, Sung-Chang;Lee, Soo In;Choi, Su Gil;Moon, Yi-Seul;Koo, Bon-Sung
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.607-616
    • /
    • 2013
  • Light with two faces, beneficial and harmful effects is an important signal for every living cell. Optimal adaptation to light environment enhances the fitness of an organism and survival in nature. Understandings of light quality and plant growth provide with the economical guides for artificial light sources like LEDs. Compared with those under white light, the 1 week seedlings of Chinese cabbage (Brassica rapa) under monochromic red and blue light showed normal development and growth. In contrast to extremely long and etiolated hypocotyls of the seedlings under dark, those under far-red etiolated were extremely short. Based on the microarray analysis, blue light induced the vigorous development and growth and two fold changes of transcripts than red light condition. To have insight of gene products under different light qualities conditions, GO term enrichments were calculated and each gene according to their GO terms were categorized. The blue and red lights affected the expressions of genes related to biological process. Especially, the genes related to metabolic process and developmental process and plastid and chloroplast in the cellular component category were induced under blue light. This study provided the molecular biological evidence for various light qualities on the growing process of B. rapa.

Methylated Alteration of SHP1 Complements Mutation of JAK2 Tyrosine Kinase in Patients with Myeloproliferative Neoplasm

  • Yang, Jun-Jun;Chen, Hui;Zheng, Xiao-Qun;Li, Hai-Ying;Wu, Jian-Bo;Tang, Li-Yuan;Gao, Shen-Meng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2219-2225
    • /
    • 2015
  • SHP1 negatively regulates the Janus kinase 2/signal transducer and activator of transcription (JAK2/STAT) signaling pathway, which is constitutively activated in myeloproliferative neoplasms (MPNs) and leukemia. Promoter hypermethylation resulting in epigenetic inactivation of SHP1 has been reported in myelomas, leukemias and other cancers. However, whether SHP1 hypermethylation occurs in MPNs, especially in Chinese patients, has remained unclear. Here, we report that aberrant hypermethylation of SHP1 was observed in several leukemic cell lines and bone marrow mononuclear cells from MPN patients. About 51 of 118 (43.2%) MPN patients including 23 of 50 (46%) polycythaemia vera patients, 20 of 50 (40%) essential thrombocythaemia and 8 of 18 (44.4%) idiopathic myelofibrosis showed hypermethylation by methylation-specific polymerase chain reaction. However, SHP1 methylation was not measured in 20 healthy volunteers. Hypermethylation of SHP1 was found in MPN patients with both positive (34/81, 42%) and negative (17/37, 45.9%) JAK2V617F mutation. The levels of SHP1 mRNA were significantly lower in hypermethylated samples than unmethylated samples, suggesting SHP1 may be epigenetically inactivated in MPN patients. Furthermore, treatment with 5-aza-2'-deoxycytidine (AZA) in K562 cells showing hypermethylation of SHP1 led to progressive demethylation of SHP1, with consequently increased reexpression of SHP1. Meanwhile, phosphorylated JAK2 and STAT3 were progressively reduced. Finally, AZA increased the expression of SHP1 in primary MPN cells with hypermethylation of SHP1. Therefore, our data suggest that epigenetic inactivation of SHP1 contributes to the constitutive activation of JAK2/STAT signaling. Restoration of SHP1 expression by AZA may contribute to clinical treatment for MPN patients.

ACN9 Regulates the Inflammatory Responses in Human Bronchial Epithelial Cells

  • Jeong, Jae Hoon;Kim, Jeeyoung;Kim, Jeongwoon;Heo, Hye-Ryeon;Jeong, Jin Seon;Ryu, Young-Joon;Hong, Yoonki;Han, Seon-Sook;Hong, Seok-Ho;Lee, Seung-Joon;Kim, Woo Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.3
    • /
    • pp.247-254
    • /
    • 2017
  • Background: Airway epithelial cells are the first line of defense, against pathogens and environmental pollutants, in the lungs. Cellular stress by cadmium (Cd), resulting in airway inflammation, is assumed to be directly involved in tissue injury, linked to the development of lung cancer, and chronic obstructive pulmonary disease (COPD). We had earlier shown that ACN9 (chromosome 7q21), is a potential candidate gene for COPD, and identified significant interaction with smoking, based on genetic studies. However, the role of ACN9 in the inflammatory response, in the airway cells, has not yet been reported. Methods: We first checked the anatomical distribution of ACN9 in lung tissues, using mRNA in situ hybridization, and immunohistochemistry. Gene expression profiling in bronchial epithelial cells (BEAS-2B), was performed, after silencing ACN9. We further tested the roles of ACN9, in the intracellular mechanism, leading to Cd-induced production, of proinflammatory cytokines in BEAS-2B. Results: ACN9 was localized in lymphoid, and epithelial cells, of human lung tissues. ACN9 silencing, led to differential expression of 216 genes. Pathways of sensory perception to chemical stimuli, and cell surface receptor-linked signal transduction, were significantly enriched. ACN9 silencing, further increased the expression of proinflammatory cytokines, in BEAS-2B after Cd exposure. Conclusion: Our findings suggest, that ACN9 may have a role, in the inflammatory response in the airway.

A Study of Literary Therapy on the Rated Sijo as a Conductor that Works the Motherboard of Mind (마음의 메인보드를 작동시키는 전도체로서의 정격 시조에 관한 문학치료 연구)

  • Park, In-kwa
    • The Journal of the Convergence on Culture Technology
    • /
    • v.2 no.4
    • /
    • pp.31-40
    • /
    • 2016
  • The hardware of the human body is given the life force by the sentence which is the physiological software that the program for cell activation by the electrical signal enters. The aim of this study is to create a better therapeutic environment for the human body that groaned with errors in the physiological and cognitive systems that are transmitted to neurons and neurons. The sentence program of the rated sijo, which is the software of the human body which has the function as a conductor to connect the emotions of joy, anger, sadness, and enthusiasm to the human mental system, can be connected to the neuron system of the human body, we tried to identify the principle of operating the motherboard of mind in humanities. Once these principles are identified, we can figure out how to minimize side effects and lead the body to a therapeutic program. The research found that there is a strong energy source that can operate the motherboard of the heart very quickly in the rated Sijo. This is because it is confirmed that new coding and re-coding of a number of rated sijo, or a new syllable of one syllable followed by the original syllable of the original syllable, are formed quickly and therapeutically.This has led to the possibility of literary therapy for mankind to upgrade the human psychic system in abundance through the function of the interaction between the sentence as a conductor that is synaptically connected to the human body and the mainboard of the mind attached to the human body without side effects in the future.

Molecular Cloning and Characterization of a P38-Like Mitogen-Activated Protein Kinase from Echinococcus granulosus

  • Lu, Guodong;Li, Jing;Zhang, Chuanshan;Li, Liang;Bi, Xiaojuan;Li, Chaowang;Fan, Jinliang;Lu, Xiaomei;Vuitton, Dominique A.;Wen, Hao;Lin, Renyong
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.759-768
    • /
    • 2016
  • Cystic echinococcosis (CE) treatment urgently requires a novel drug. The p38 mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases, but still have to be characterized in Echinococcus granulosus. We identified a 1,107 bp cDNA encoding a 368 amino acid MAPK protein (Egp38) in E. granulosus. Egp38 exhibits 2 distinguishing features of p38-like kinases: a highly conserved T-X-Y motif and an activation loop segment. Structural homology modeling indicated a conserved structure among Egp38, EmMPK2, and H. sapiens $p38{\alpha}$, implying a common binding mechanism for the ligand domain and downstream signal transduction processing similar to that described for $p38{\alpha}$. Egp38 and its phosphorylated form are expressed in the E. granulosus larval stages vesicle and protoscolices during intermediate host infection of an intermediate host. Treatment of in vitro cultivated protoscolices with the p38-MAPK inhibitor ML3403 effectively suppressed Egp38 activity and led to significant protoscolices death within 5 days. Treatment of in vitro-cultivated protoscolices with $TGF-{\beta}1$ effectively induced Egp38 phosphorylation. In summary, the MAPK, Egp38, was identified in E. granulosus, as an anti-CE drug target and participates in the interplay between the host and E. granulosus via human $TGF-{\beta}1$.

Characterization of a New ${\beta}$-Lactamase Gene from Isolates of Vibrio spp. in Korea

  • Jun, Lyu-Jin;Kim, Jae-Hoon;Jin, Ji-Woong;Jeong, Hyun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.555-562
    • /
    • 2012
  • PCR was performed to analyze the ${\beta}$-lactamase genes carried by ampicillin-resistant Vibrio spp. strains isolated from marine environments in Korea between 2006 and 2009. All 36 strains tested showed negative results in PCR with the primers designed from the nucleotide sequences of various known ${\beta}$-lactamase genes. This prompted us to screen new ${\beta}$-lactamase genes. A novel ${\beta}$-lactamase gene was cloned from Vibrio alginolyticus KV3 isolated from the aquaculture water of Geoje Island of Korea. The determined nucleotide sequence (VAK-3 ${\beta}$-lactamase) revealed an open reading frame (ORF) of 852 bp, encoding a protein of 283 amino acids (aa), which displayed low homology to any other ${\beta}$-lactamase genes reported in public databases. The deduced 283 aa sequence of VAK-3, consisting of a 19 aa signal peptide and a 264 aa mature protein, contained highly conserved peptide segments specific to class A ${\beta}$-lactamases including the specific amino acid residues STFK (62-65), SDN (122-124), E (158), and RTG (226-228). Results from PCR performed with primers specific to the VAK-3 ${\beta}$-lactamase gene identified 3 of the 36 isolated strains as V. alginolyticus, Vibrio cholerae, and Photobacterium damselae subsp. damselae, indicating the utilization of various ${\beta}$-lactamase genes including unidentified ones in ampicillin-resistant Vibrio spp. strains from the marine environment. In a mating experiment, none of the isolates transfered the VAK-3 ${\beta}$-lactamase gene to the Escherichia coli recipient. This lack of mobility, and the presence of a chromosomal acyl-CoA flanking sequence upstream of the VAK-3 ${\beta}$-lactamase gene, led to the assumption that the location of this new ${\beta}$-lactamase gene was in the chromosome, rather than the mobile plasmid. Antibiotic susceptibility of VAK-3 ${\beta}$-lactamase was indicated by elevated levels of resistance to penicillins, but not to cephalosporins in the wild type and E. coli harboring recombinant plasmid pKV-3, compared with those of the host strain alone. Phylogenetic analysis showed that VAK-3 ${\beta}$-lactamase is a new and separate member of class A ${\beta}$-lactamases.

Interaction of Pseudostellaria heterophylla with Quorum Sensing and Quorum Quenching Bacteria Mediated by Root Exudates in a Consecutive Monoculture System

  • Zhang, Liaoyuan;Guo, Zewang;Gao, Huifang;Peng, Xiaoqian;Li, Yongyu;Sun, Shujing;Lee, Jung-Kul;Lin, Wenxiong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2159-2170
    • /
    • 2016
  • Many plant-pathogenic bacteria are dependent on quorum sensing (QS) to evoke disease. In this study, the population of QS and quorum quenching (QQ) bacteria was analyzed in a consecutive monoculture system of Pseudostellaria heterophylla. The isolated QS strains were identified as Serratia marcescens with SwrIR-type QS system and exhibited a significant increase over the years of monoculture. Only one QQ strain was isolated from newly planted soil sample and was identified as Bacillus thuringiensis, which secreted lactonase to degrade QS signal molecules. Inoculation of S. marcescens to P. heterophylla root could rapidly cause wilt disease, which was alleviated by B. thuringiensis. Furthermore, the expression of lactonase encoded by the aiiA gene in S. marcescens resulted in reduction of its pathogenicity, implying that the toxic effect of S. marcescens on the seedlings was QS-regulated. Meanwhile, excess lactonase in S. marcescens led to reduction in antibacterial substances, exoenzymes, and swarming motility, which might contribute to pathogensis on the seedlings. Root exudates and root tuber extracts of P. heterophylla significantly promoted the growth of S. marcescens, whereas a slight increase of B. thuringiensis was observed in both samples. These results demonstrated that QS-regulated behaviors in S. marcescens mediated by root exudates played an important role in replanting diseases of P. heterophylla.

Transcriptional and Nontranscriptional Regulation of NIS Activity and Radioiodide Transport (NIS 기능의 전사 및 전사외 조절과 방사성옥소 섭취)

  • Jung, Kyung-Ho;Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.343-349
    • /
    • 2007
  • Radioiodide transport has been extensively and successfully used in the evaluation and management of thyroid disease. The molecular characterization of the sodium/iodide symporter (NIS) and cloning of the NIS gene has led to the recent expansion of the use of radioiodide to cancers of the breast and other nonthyroidal tissues exogenously transduced with the NIS gene. More recently, discoveries regarding the functional analysis and regulatory processes of the NIS molecule are opening up exciting opportunities for new research and applications for NIS and radio iodide. The success of NIS based cancer therapy is dependent on achievement of maximal radioiodide transport sufficient to allow delivery of effective radiation doses. This in turn relies on high transcription rates of the NIS gene. However, newer discoveries indicate that nontranscriptional processes that regulate NIS trafficking to cell membrane are also critical determinants of radioiodide uptake. In this review, molecular mechanisms that underlie regulation of NIS transcription and stimuli that augment membrane trafficking and functional activation of NIS molecules will be discussed. A better understanding of how the expression and cell surface targeting of NIS proteins is controlled will hopefully aid in optimizing NIS gene based cancer treatment as well as NIS based reporter-gene imaging strategies.

Novel Quinazoline Derivatives Targeting on EGFR Kinase Mediated Signal Pathway in A431 Human Epidermoid Carcinoma Cells (A431 피부암세포의 EGFR kinase 신호체계에 선택적으로 작용하는 새로운 퀴나졸린계 억제제)

  • Jeong, Chul-Woo;Son, Byeng-Wha;Ha, Jae-Du;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.349-357
    • /
    • 2011
  • Inhibitors of EGFR (epidermal growth factor receptor) kinase activity may prove useful to therapeutically intervene in cancer and to treat other proliferative diseases. In this study, we investigated the inhibitive effects of two compounds named 63013 and 63033 possess a [1,4]-dioxino quinazoline structure that links the alkoxy side chains together and their structural characteristics are considered to allow better solubility than the dialkoxyquinazoline derivatives. The EGFR kinase activities of A431 human epidermoid carcinoma cells, stimulated by EGF were inhibited by treatment with 63013 and 63033 in a dose-dependent manner respectively. Consistent with the compound-mediated EGFR kinase suppression, the major EGF-related downstream target molecules, such as MEK1/2, MAPK p44/42, AKT and STAT3, were also suppressed by both compounds. Interestingly, both compounds led to cell growth inhibition at a lower concentration than that of Gefitinib (Iressa$^{(R)}$). Collectively, our study showed that both compounds may have good therapeutic potential as an EGFR kinase specific inhibitor to treat EGFR-related diseases.

Effects of Proline and Gelatin on hCTLA4Ig Production in Transgenic Rice Suspension Cells (형질전환 벼 현탁세포를 이용한 hCTLA4Ig 생산에서 proline과 gelatin이 미치는 영향)

  • Song, Mi-Na;Cheon, Su-Hwan;Kwon, Jun-Young;Choi, Sung-Hun;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.246-252
    • /
    • 2009
  • Rice cells were transformed to express human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) using RAmy3D promoter. hCTLA4Ig was produced and secreted into culture media inducibly when sugar was depleted. The obstacles of this system are the cell death and release of proteases by sugar starvation. These problems resulted in the losses of stability and productivity of hCTLA4Ig. Therefore, the effects of proline as an inhibitor of cell death were investigated. When 4 mM proline was added in sugar-free media, the cell death and release of proteases were reduced. As a consequence, the production of hCTLA4Ig was enhanced. In addition, the effects of protein stabilizers such as gelling agents were studied. It was found that the application of 0.01 g/L gelatin led to an increase in hCTLA4Ig production. This increase might be originated from the stabilization of hCTLA4Ig. In conclusion, the production of hCTLA4Ig could be enhanced by the additions of proline and gelatin in transgenic rice cell cultures.