• Title/Summary/Keyword: LED Driver

Search Result 286, Processing Time 0.021 seconds

Single Stage Current-Balancing Multi-Channel LED Driver for LED TV (LED TV를 위한 단일전력단 전류평형 다채널 LED 구동회로)

  • Ryu, Dong-Kyun;Won, Chung-Yuen;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.564-571
    • /
    • 2014
  • A single-stage current-balancing multi-channel light-emitting diode (LED) driver is proposed in this study. The conventional LED driver system consists of two cascaded power conversion stages, i.e., an isolation DC/DC converter and LED driver. LED driver is usually implemented with the same number of expensive boost converters as those of LED channels to tightly control the current through each LED channel. Therefore, its overall system size is not only bulky, but the cost is rather high. By contrast, the proposed LED driver system is composed of a single power stage with the DC/DC converter and LED driver merged. Although the current balancing circuit of the proposed LED driver requires only passive devices instead of expensive boost converters, all currents through multi-channel LEDs can be well balanced. Therefore, the proposed LED driver features a small system size, improved efficiency, and low cost. To confirm the validity of the proposed driver, its operation and performance are verified on a prototype for a 46" LED TV.

A Study on the Modularization of LED Driver for Illumination Using a Fly-Back Converter (플라이백 컨버터를 이용한 조명용 LED Driver의 모듈화 연구)

  • Choi, Jin-Bong;Kim, Kwan-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.504-513
    • /
    • 2009
  • This paper proposes the new type LED driver modularization for illumination LED driver. The proposed LED driver circuit insulates a hot GND of AC input power and a cold GND of LED driver part by using a fly-back converter. In order to control easily the current of the LED, the fly-back converter is operated in the discontinuous mode with excellent dynamic characteristics, and the characteristics of the LED are verified after the closed loop control is performed using a KIA2431. The LED driver module allows the wide AC power input ranges and realizes the burst dimming function which directly regulates a PWM control IC. This paper describes the operation principle of the LED driver module and it is proved the usefulness through the real model with experimentation. Besides, this paper proposes the multi-channel LED driver which the miniaturized and modularized LED driver module are connected by parallel, and verified its propriety by experiments.

Driver Design with Linear Feedback Function for the Optimum Power Consumption of LED BLU (LED BLU의 최적 소비전력을 위한 선형적 피드백 제어기능을 가지는 드라이버 설계)

  • Lee, Seung-Woo;Yu, Nam-Hee;Cho, Seong-Ik;Shin, Hong-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1513-1517
    • /
    • 2012
  • As demands for green industry increase, this paper proposes a power control technique that can substitute pre -existing CCFL(Cold Cathode Fluorescent Lamp) and optimize power consumption of LED BLU. This technique is designing LED driver circuit that make a DC-DC output voltage(VLED) to have a linear control function for a supply voltage of LED string. The proposed LED driver have an advantage that can increase or decrease a DC-DC output voltage compared with conventional LED driver. The designed LED driver circuit was designed using 0.35um CMOS technology. And its operation was verified through simulation.

Multi-channel Current Balancing Single Switch LED Driver for LED Backlight (LED Backlight를 위한 다채널 전류평형 단일스위치 LED 구동회로)

  • Hwang, Sang-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2016
  • We propose a multi-channel current-balancing single switch light-emitting diode (LED) driver for a 3D TV. Conventional LED drivers require non-isolated DC/DC converters as many as the number of LED channels, whereas the proposed LED driver needs only one power switch and several balancing capacitors instead of expensive non-isolated DC/DC converters. Therefore, the proposed driver features a simple structure with low cost and high efficiency. In particular, because its power switch can be turned off under the zero-current switching condition, the proposed driver has desirable advantages, such as improved electromagnetic interference characteristics and high efficiency. Moreover, it only uses a small number of DC blocking capacitors with no additional active devices for the current balancing of multi-channel LEDs. Therefore, the proposed driver exhibits high reliability and cost effectiveness. To confirm the validity of the proposed driver, we perform a theoretical analysis and present design considerations and experimental results obtained from a prototype that is applicable to a 46" LED TV.

LED Driver Design with Power Optimum Control Function (전력 최적제어 기능을 가진 LED 드라이버 설계)

  • Lee, Seung-Woo;Shin, Hong-Gyu;Cho, Seong-Ik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.253-256
    • /
    • 2011
  • LEDs have small size, long lifespan, high reliability, low power consumption and high color efficiency. Using such a characteristics, LED Back Light Unit has been studying actively. This paper proposes LED driver to minimize power consumption due to LED forward voltage($V_F$) difference and temperature rising. Compared to conventional LED driver, the proposed driver have excellent stability, brief structure and linear output voltage of DC-DC boost converter. Proposed LED Driver circuit was designed using 0.35um CMOS technology. And its operation was verified through simulation.

Distributed Power Conversion LED Driver Circuit using Parasitic Inductance (기생인덕턴스 성분을 이용한 분산형 전력변환 LED 구동회로)

  • Kim, Sang-Eon;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.117-122
    • /
    • 2013
  • The distributed power conversion LED driver circuit using parasitic inductance is proposed in this paper. while the conventional LED driver circuit is composed of the large size devices and heatsinks, the proposed circuit can be realized with the small sized no heatsink based. since the processing power can be effectively distributed. Also by using the wire parasitic inductance of the LED string, the proposed circuit can be implemented without external magnetic device. As a result, the proposed circuit which features the small size and volume con be realized even without LED driver module(LDM) board. since, all the device can be attached to the existing LED array Module(LAM) board. Therefore, it features that cost savings and volume reduction of circuit. To confirm the validity of the proposed circuit, theoretical analysis and experimental results from a distributed power conversion LED driver circuit prototype are presented.

Cost-Effective Single Switch Multi-Channel LED Driver

  • Hwang, Sang-Soo;Hwang, Won-Sun;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.319-326
    • /
    • 2015
  • In this paper, a cost-effective single switch multi-channel LED (light emitting diode) driver is proposed. While conventional LED drivers require as many non-isolated DC/DC converters as the number of LED channels, the proposed LED driver needs only one power switch and several balancing capacitors instead of expensive non-isolated DC/DC converters. Therefore, the proposed driver features a simpler structure, with a lower cost and a higher efficiency. Because its power switch can be turned off under the zero current switching condition, it has very desirable advantages such as improved electromagnetic interference characteristics and high efficiency. Moreover, it uses only a small number of DC blocking capacitors with no additional active devices for the current balancing of multi-channel LEDs. As a result, the proposed driver exhibits high reliability and is cost effective. To confirm the validity of the proposed driver, a theoretical analysis is performed, and design considerations and experimental results obtained from a prototype that is applicable to a 46" LED-TV are presented.

A New Cost-Effective Current-Balancing Multi-Channel LED Driver for a Large Screen LCD Backlight Units

  • Hong, Sung-Soo;Lee, Sang-Hyun;Cho, Sang-Ho;Roh, Chung-Wook;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • A new current-balancing multi-channel LED driver is proposed in this paper. The conventional LED driver system consists of three cascaded power conversion stages and its driver stage has the same number of expensive boost converters as those of the LED channels. On the other hand, the proposed LED driver system consists of two cascaded power stages and its driver stage requires only passive devices instead of expensive boost converters. Nevertheless, all of the currents through multi-channel LEDs can be well balanced. Therefore, it features a smaller system size, improved efficiency, and lower cost. To confirm the validity of the proposed driver, its operation and performance are verified on a prototype for a 46" LCD TV.

The Design of High efficiency multi-channel LED light Driver suitable for Streetlamp (가로등에 적합한 고효율 멀티채널 LED 조명 구동장치 설계)

  • Song, Je-Ho;Kim, Hwan-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4489-4493
    • /
    • 2014
  • LED light driving device has problems in efficiency and heating at higher than 150W. In addition, there is inconvenience in replacing the lighting device to another when W is not the same as the previous one. In this paper, a multi-channel LED light driver, driver embedded driver circuit in a multi-channel structure with a power system in the driver-interlocking structure was designed. With the auto control converter structure with a power efficiency above 93% and power factor above 0.98, the weight of the high efficiency LED lighting-actuating device in driver-interlocking structure, a driver in self-calibrating self-optimization structure. In this paper, at below 10% THD, the existing converter contrast weight was reduced by 40% or more.

Floating Voltage Stacked LED Driver for Low Voltage Stress and Multi-channel Current Balancing (저 전압스트레스 및 다채널 전류 평형을 위한 Floating 전압 스택형 단일스위치 LED 구동회로)

  • Hwang, Won-Sun;Hwang, Sang-Soo;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.122-129
    • /
    • 2015
  • In this study, we propose a low voltage stress and cost-effective light emitting diode (LED) driver capable of multi-channel current balancing. Conventional LED drivers require as many boost converters as the number of LED channels, whereas the proposed LED driver requires only one buck converter and several balancing capacitors instead of several expensive boost converters. Additionally, while the components of the boost converter have high voltage stress and depend on the LED driving voltage, components of the proposed driver have about one-half of the voltage stress across all components. The proposed driver exhibits high reliability and cost effectiveness because it only uses few DC blocking capacitors with no additional active devices to balance the current of multi-channel LEDs. The proposed driver exhibits high reliability and cost effectiveness. The validity of the proposed driver is confirmed through a theoretical analysis. An explanation of the design considerations and experimental results were obtained using a prototype applicable to a 46" LED-TV.