• 제목/요약/키워드: LDHB

검색결과 5건 처리시간 0.016초

Functional and Physical Interaction between Human Lactate Dehydrogenase B and $Na^+/H^+$ Exchanger Isoform 1

  • Kim, Eun-Hee
    • Animal cells and systems
    • /
    • 제13권3호
    • /
    • pp.283-288
    • /
    • 2009
  • The ubiquitous plasma membrane $Na^+/H^+$ exchanger 1 (NHE1) is rapidly activated in response to various extracellular stimuli and maintains normal cytoplasmic pH. Yeast two-hybrid screening was used in order to identify proteins interacting with NHE1 using its cytoplasmic domain as a bait from HeLa cDNA library. One of the interacting cDNA clones was human Lactate dehydrogenase B (LDHB). In vitro translated LDHB was pulled down together with GST-NHE1.cd protein in the GST pull down assay, confirming the interaction in vitro. LDHB antibody immunoprecipitated endogenous LDHB together with NHE1 from H9c2 cells, validating cellular interaction between NHE1 and LDHB. Subsequent analysis revealed that the overexpression of LDHB increased intracellular PH, implying opening of the NHE1 transporter. Moreover, overexpression of LDHB activated caspase 3 and induced cell death, consistent with the expected phenotype of hyper-activation of NHE1. Collectively, our data indicate that LDHB modulates NHE1 activity via physical interaction.

Molecular Characterization and Expression of LDHA and LDHB mRNA in Testes of Japanese Quail (Coturnix japonica)

  • Singh, R.P.;Sastry, K.V.H.;Pandey, N.K.;Shit, N.G.;Agarwal, R.;Singh, R.;Sharma, S.K.;Saxena, V.K.;Jagmohan, Jagmohan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권8호
    • /
    • pp.1060-1068
    • /
    • 2011
  • The LDH isozymes are key catalysts in the glycolytic pathway of energy metabolism. It is well known that the distribution of the LDH isozymes vary in accordance with the metabolic requirements of different tissues. The substrates required for energy production change noticeably at successive stages of testes development suggesting a significant flexibility in the expression of glycolytic enzymes. Therefore, expression of LHDA and LDHB mRNAs was examined in adult and prepubertal quail testis. The mRNA of both LDHA and LDHB were expressed and no significant difference was observed in prepubertal testes. The mRNA levels of LDHB significantly increased during testicular development. In the adult testis, LDHA mRNA was not expressed. Expression studies revealed the presence of different LDH isozymes during testicular development. In contrast, electrophoresis of both testicular samples revealed only single band at a position indicative of an extreme type of LDH isozyme in quail testes. Furthermore, nucleotide and amino acid sequence analysis revealed significant similarity to chicken, duck and rock pigeon. These sequence results confirmed the similarity of LDHA and LDHB subunit protein in different avian species.

한국산 야생집쥐(Rattus nowegicus) 집단의 단백질 다형과 유전적 변이 (Protein Polvmorphisms and llariations of Wild House Rat (Rattus norueRicus) Population in Korea)

  • 김남근;이하규이정주
    • 한국동물학회지
    • /
    • 제36권2호
    • /
    • pp.193-199
    • /
    • 1993
  • The protein po;vmorphisms and allele frequencies of wild house rat (Rattus norvegicus) population in Korea were studied. The studied proteins and enzymes were transferrin (Tf), albumin (Alb), fumarate hvdratase (FH), phospho!loucomutase (PGM), lactate dehvdrogenase A (LDHA) and lactate dehvdrogenase B (LDHB). There were two transferrin alleles, TP and Tf in Korean wild house rat popu1ation. The Tf2 allele was found for the first time by a starch gel, and confirmed by a polvacrvlamide gel isoelectric focusing and immunoblotting. The allele frequencies of TP and TF were 0.985 and 0.015, respectively. Two common alleles fumarate hydratase, FHa and FHb were found, and frequencies of FHa and FPP were calculated to be 0.714 and 0.286, respectively. The kequenw of FH in Korean wild house rat was higher than that of Finnish and Czechoslovakian population. Alb, PGM, LDHA and LDHB are only one phenotype each and all. Therefore, these proteins seem to be monomorphic in Korean wild house rat population.

  • PDF

Lactate Can Modulate the Expression of Lactate Dehydrogenase and Aquaporin Genes in Mouse Preimplanation Embryos

  • Shin, Soo-Jung;Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권3호
    • /
    • pp.219-226
    • /
    • 2012
  • It is suggested that carbohydrate metabolites may involve in the development of morula to blastocyst but many of the mechanisms are not unmasked. Two-cell stage embryos were collected and examined the effects of lactate on the development of blastocyst in vitro. The expression profiles of lactate dehydrognase (Ldh) genes and aquaporin (Aqp) genes were analyzed with RT-PCR. The successful development from morula to blastocyst was dependent on lactate concentrations. The expression profiles of Ldh genes were changed by the lactate concentration. Ldha was expressed in morula stage at 10 mM lactate, and in blastocyst stage at lactate free condition. Ldhb was expressed in morula stage at 10 mM and 20 mM lactate, and in blastocyst stage at 10 mM lactate. Aqp genes were also showed different expression patterns by the lactate concentrations. Aqp3 was expressed in hatching embryo at 120 hr post hCG administration (hph) which was cultured in BWW medium and lactate free condition. Aqp7 was expressed in hatching embryos at 120 hph which was cultured at 10 mM lactate condition. Also Aqp8 was expressed in hatching embryo at BWW and 20 mM lactate condition. Aqp9 was expressed in morula at BWW and 10 mM lactate condition, and in blastocyst at BWW. Based on these results, it is suggested that concentration of lactate in the medium and the level of lactate synthesis in embryo is critical factor for blastocoels formation. In addition it is suggested that LDH may involve the AQPs expression in embryos.

HMGB1/Snail cascade에 의한 epithelial-mesenchymal transition 및 glycolytic switch, mitochondrial repression 유도 (High-mobility Group Box 1 Induces the Epithelial-mesenchymal Transition, Glycolytic Switch, and Mitochondrial Repression via Snail Activation)

  • 이수연;주민경;전현민;김초희;박혜경;강호성
    • 생명과학회지
    • /
    • 제29권11호
    • /
    • pp.1179-1191
    • /
    • 2019
  • 암세포는 epithelial mesenchymal transition (EMT)를 통해 tumor invasion과 metastasis가 일어나며, 또한 정상세포와 다른 oncogenic metabolic phenotypes 획득 즉, glycolytic switch 등이 암 발생과 진행에 깊이 연관되어 있음이 잘 알려져 있다. High-mobility group box 1 (HMGB1)은 chromatin-associated nuclear protein으로 알려져 있으나, dying cells 또는 immune cells로부터 방출되기도 한다. 방출된 HMGB1은 damage-associated molecular pattern (DAMP)로서 작용하여 EMT 및 invasion, metastasis를 유도함으로서 tumor progression에 기여한다고 알려졌다. 본 연구에서 HMGB1에 의해 EMT와 glycolytic switch 유도되며, 이 과정은 Snail 의존적임을 확인하였다. 또한 HMGB1/Snail cascade는 COX subunits인 COXVIIa와 COXVIIc의 발현 억제를 통해 mitochondrial repression과 cytochrome c oxidase (COX) inhibition을 유도하였다. HMGB1은 Snail를 통해 glycolytic switch의 주요 효소인 hexokinase 2 (HK2), phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2), phosphoglycerate mutase 1 (PGAM1)의 발현을 증가시켰다. 이들 효소는 glycolytic switch에 중요하게 관여하는 것으로 알려져 있다. 이들 해당과정의 효소들을 knockdown한 결과 HMGB1에 의한 EMT를 억제함으로써 glycolysis와 HMGB1-induced EMT가 밀접하게 연관되어 있을 제시하였다. 이상의 연구 결과들은 HMGB1/Snail cascade가 EMT 및 glycolytic switch, mitochondrial repression에 중요하게 작용할 것임을 시사한다.